Soil tests for predicting nitrogen supply for grassland under controlled environmental conditions

2014 ◽  
Vol 152 (S1) ◽  
pp. 82-95 ◽  
Author(s):  
N. T. MCDONALD ◽  
C. J. WATSON ◽  
R. J. LAUGHLIN ◽  
S. T. J. LALOR ◽  
J. GRANT ◽  
...  

SUMMARYMineralized soil nitrogen (N) is an important source of N for grassland production. Some soils can supply large quantities of plant-available N through mineralization of soil organic matter. Grass grown on such soils require less fertilizer N applications per unit yield. A reliable, accurate and user-friendly method to account for soil N supply potential across a large diversity of soils and growing conditions is needed to improve N management and N recommendations over time. In the current study, the effectiveness of chemical N tests and soil properties to predict soil N supply for grass uptake across 30 Irish soil types varying in N supply potential was investigated under controlled environmental conditions. The Illinois soil N test (ISNT) combined with soil C : N ratio provided a good estimate of soil N supply in soils with low residual mineral N. Total oxidized N (TON) had the largest impact on grass dry matter (DM) yield and N uptake across the 30 soil types, declining in its influence in later growth periods. This reflected the high initial mineral N levels in these soils, which declined over time. In the current study, a model with ISNT-N, C : N and TON (log TON) best explained variability in grass DM yield and N uptake. All three rapid chemical soil tests could be performed routinely on field samples to provide an estimate of soil N supply prior to making N fertilizer application decisions. It can be concluded that these soil tests, through their assessment of soil N supply potential, can be effective tools for N management on grassland; however, field studies are needed to evaluate this under more diverse growing conditions.

2021 ◽  
Author(s):  
Guangfu Huang ◽  
Yujiao Zhang ◽  
Shilai Zhang ◽  
Jing Zhang ◽  
Shuxian Gan ◽  
...  

Abstract Aims: In the absence of tillage, perennial rice is an innovation and supplement to rice production. Evaluating crop N uptake and N requirements and maintaining soil N balance are essential for informing decisions regarding optimal N management and the accessibility of the soil environment benefits of perennial rice cropping systems. Methods: To assess the soil nitrogen cycle and balance, formulate optimal N fertilizer management for perennial rice, a field experiment with four nitrogen rates (N0, N1, N2 and N3 refer to 0, 120, 180 and 240 kg N ha-1, respectively) integrated with three planting densities (D1, D2 and D3 refer to 100×103, 167×103 and 226×103 plants ha-1, respectively) was conducted for two years over four seasons (2016-2017) in southern China. Results: The results showed that N2D3 mode could sustainably produce higher dry matter accumulation (15.15 t ha-1) and grain yields (7.67 t ha-1) over four seasons, showed significantly higher N uptake (201 kg ha-1 each season) and less soil N loss (27.1%). Additionally, the N2D3 mode could reach the optimal N balance (-0.2 kg ha-1) in perennial rice fields with low N requirements (23.9 kg N Mg-1 grain), resulting in higher N use efficiency (NAE: 26.5 kg N kg-1, NRE: 64.9%). Conclusion: In the perennial rice cropping system, 180 kg N ha-1 integrated with 226×103 plants ha-1 resulted in higher grain yields with lower N requirements, higher N use efficiencies, and lower soil N losses, thereby maintaining the soil N balance for sustainable perennial rice production.


1997 ◽  
Vol 48 (3) ◽  
pp. 305 ◽  
Author(s):  
I. C. R. Holford ◽  
G. J. Crocker

Six treatments were compared for their effects on wheat yields, nitrogen (N) uptake, protein content, and fertiliser N requirements in a long-term rotation study on a black earth and a red clay in northern New South Wales. Three of the treatments were lucerne, subterranean clover, and snail medic, all grown simultaneously from 1988 to 1990 and all followed by 3 years of wheat. The other 3 treatments were biennial rotations of chickpea–wheat and long-fallow–wheat as well as a continuous wheat monoculture, all lasting 6 years. With the exception of the first wheat crop, which experienced very low growing-season rainfall, lucerne was more beneficial than other legumes to following wheat crops in terms of yield, protein content, and fertiliser N requirement. Clover closely followed lucerne in the magnitude of its positive effects, whereas medic and chickpea produced much smaller effects. Because of the amount of N removed in the chickpea grain, it appeared that the small positive effects of chickpea were due to soil N sparing or rapid mineralisation from crop residues rather than any net contribution of N fixation to soil N accretion. Average yields of the 3 wheat crops following lucerne and clover were much higher than average yields 20 years previously following lucerne, even though average yields of continuously grown wheat have declined over the past 20 years. However, lucerne eliminated the need for N fertiliser for no more than 2 following wheat crops, and clover for only the first wheat crop. It appears that the longer duration of lucerne benefits reported in earlier studies was due to the higher background soil N levels as well as the lower yield potential in the earlier years. Nevertheless, lucerne lowered the fertiliser requirement of the third wheat crop by more than 50%. In contrast to lucerne, annual legumes are probably most beneficial if grown in alternate years with wheat. The large benefits of long fallowing particularly on the black earth were apparently caused by its enhancement of soil moisture and mineral N accumulation. However, these N effects were surprisingly large considering the degree of depletion of organic matter in long-fallowed soils.


Author(s):  
Olivia H. Cousins ◽  
Trevor P. Garnett ◽  
Amanda Rasmussen ◽  
Sacha J. Mooney ◽  
Ronald J. Smernik ◽  
...  

AbstractDue to climate change, water availability will become increasingly variable, affecting nitrogen (N) availability. Therefore, we hypothesised watering frequency would have a greater impact on plant growth than quantity, affecting N availability, uptake and carbon allocation. We used a gravimetric platform, which measures the unit of volume per unit of time, to control soil moisture and precisely compare the impact of quantity and frequency of water under variable N levels. Two wheat genotypes (Kukri and Gladius) were used in a factorial glasshouse pot experiment, each with three N application rates (25, 75 and 150 mg N kg−1 soil) and five soil moisture regimes (changing water frequency or quantity). Previously documented drought tolerance, but high N use efficiency, of Gladius as compared to Kukri provides for potentially different responses to N and soil moisture content. Water use, biomass and soil N were measured. Both cultivars showed potential to adapt to variable watering, producing higher specific root lengths under low N coupled with reduced water and reduced watering frequency (48 h watering intervals), or wet/dry cycling. This affected mineral N uptake, with less soil N remaining under constant watering × high moisture, or 48 h watering intervals × high moisture. Soil N availability affected carbon allocation, demonstrated by both cultivars producing longer, deeper roots under low N. Reduced watering frequency decreased biomass more than reduced quantity for both cultivars. Less frequent watering had a more negative effect on plant growth compared to decreasing the quantity of water. Water variability resulted in differences in C allocation, with changes to root thickness even when root biomass remained the same across N treatments. The preferences identified in wheat for water consistency highlights an undeveloped opportunity for identifying root and shoot traits that may improve plant adaptability to moderate to extreme resource limitation, whilst potentially encouraging less water and nitrogen use.


2001 ◽  
Vol 136 (1) ◽  
pp. 15-33 ◽  
Author(s):  
R. SYLVESTER-BRADLEY ◽  
D. T. STOKES ◽  
R. K. SCOTT

Experiments at three sites in 1993, six sites in 1994 and eight sites in 1995, mostly after oilseed rape, tested effects of previous fertilizer N (differing by 200 kg/ha for 1993 and 1994 and 300 kg/ha for 1995) and date of sowing (differing by about 2 months) on soil mineral N and N uptake by winter wheat cv. Mercia which received no fertilizer N. Soil mineral N to 90 cm plus crop N (‘soil N supply’; SNS) in February was 103 and 76 kg/ha after large and small amounts of previous fertilizer N respectively but was not affected by date of sowing. Previous fertilizer N seldom affected crop N in spring because sowing was too late for N capture during autumn, but it did affect soil mineral N, particularly in the 60–90 cm soil horizon, presumably due to over-winter leaching. Tillering generally occurred in spring, and was delayed but not diminished by later sowing. Previous fertilizer N increased shoot survival more than it increased shoot production. Final shoot number was affected by previous fertilizer N, but not by date of sowing. Overall, there were 29 surviving tillers/g SNS.N uptakes at fortnightly intervals from spring to harvest at two core sites were described well by linear rates. The difference between sowings in the fitted date with 10 kg/ha crop N was 1 month; these dates were not significantly affected by previous fertilizer. N uptake rates were increased by both previous fertilizer N and late sowing. Rates of N uptake related closely to soil mineral N in February such that ‘equivalent recovery’ was achieved in late May or early June. At one site there was evidence that most of the residue from previous fertilizer N had moved below 90 cm by February, but N uptake was nevertheless increased. Two further ‘satellite’ sites behaved similarly. Thus at 14 out of 17 sites, N uptake until harvest related directly and with approximate parity to soil mineral N in February (R2 = 0·79), a significant intercept being in keeping with an atmospheric contribution of 20–40 kg/ha N at all sites.It is concluded that, on retentive soils in the UK, SNS in early spring was a good indicator of N availability throughout growth of unfertilized wheat, because the N residues arising from previous fertilizer mineralized before analysis, yet remained largely within root range. The steady rates of soil mineral N recovery were taken as being dependent on progressively deeper root development. Thus, even if soil mineral N equated with a crop's N requirement, fresh fertilizer applications might be needed before ‘equivalent recovery’ of soil N, to encourage the earlier processes of tiller production and canopy expansion. The later process of grain filling was sustained by continued N uptake (mean 41 kg/ha) coming apparently from N leached to the subsoil (relating to previous fertilizer use) as well as from sources not related to previous fertilizer use; significant net mineralization was apparent in some subsoils.


1994 ◽  
Vol 122 (3) ◽  
pp. 445-457 ◽  
Author(s):  
J. Webb ◽  
R. Sylvester-Bradley

SUMMARYNitrogen nutrition of two succeeding wheat crops was studied after ploughing of grassland in July 1987 on a clay soil at ADAS Drayton. The four plots of grassland had received 100, 250, 450 and 750 kg N/ha per year for 4 years from 1984 and were grazed by beef cattle at stocking densities which varied according to grass growth.Determinations of soil mineral N taken to 60 cm every 3 weeks from July to the following May were particularly variable. However, in the first 2 years after ploughing the means of the series of mineral N measurements were directly proportional to the amounts of fertilizer N applied to the grass.N offtake in winter wheat grain without fertilizer N was directly proportional to fertilizer N applied to grass but this had little effect on maximum grain yields. Large soil N supplies did not necessarily predispose the wheat crops to large grain N concentrations because fertilizer N caused grain N offtake to reach a similar maximum, irrespective of previous grass N.Optimum amounts of fertilizer N for the wheat were 188, 147, 87 and nil kg/ha in 1988 and 152,130, 89 and 25 kg/ha in 1989 after 100, 250, 450 and 750 kg N/ha per year applied to the grass. Soil N supply as indicated by both the amount of fertilizer applied to grass and means of mineral N measurements accounted for almost all of this variation. Mean soil mineral N over winter was no better as an indicator of soil N supply than the amount of N applied to the grass. However, before adopting N applied to grass as a more general index of N supply, it would need to be adjusted for variation in N removed and lost during grass growth; these were controlled in this experiment.


Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2491
Author(s):  
Gabriel Dias Paiao ◽  
Fabián G. Fernández ◽  
Seth L. Naeve

Soil drainage is not considered in the N fertilizer guidelines for corn (Zea mays L.) in the US Midwest. This study investigated the influence of soil drainage on corn grain yield, N requirement, and residual soil N, and evaluated the utility of in-season soil N measurements to guide N application. This 6-year study in Minnesota, US on a corn–soybean (Glycine max [L.] Merr.) rotation had drained and undrained conditions and six at planting (PL) (0–225 in 45 kg N ha−1 increments) and four split (SP) N fertilizer rates (at planting/V6-V8—45/45, 45/90, 45/135, 45/179 kg N ha−1). The drained compared to undrained soil produced 8% more grain yield (12.8 vs. 11.9 Mg ha−1), 12% more N uptake (169 vs. 151 kg N ha−1), 16% lower optimal N rate (ONR) (160 vs. 193 kg N ha−1), 3.1% greater grain yield at ONR (13.5 vs. 13.1 Mg ha−1), and similar in season and residual soil N. Compared to SP, PL lowered ONR (151 vs. 168 kg N ha−1) in drained soils, and the opposite occurred for undrained soils (206 vs. 189 kg N ha−1). These results substantiate the agronomic benefits of artificial drainage and the need to incorporate drainage conditions into N management guidelines.


2021 ◽  
Author(s):  
Guodong Shao ◽  
Guntars Martinson ◽  
Jie Luo ◽  
Xenia Bischel ◽  
Dan Niu ◽  
...  

<p>Monoculture cropland is a major contributor to agriculture-related sources of N<sub>2</sub>O emission, a potent greenhouse gas and an agent of ozone depletion. Cropland agroforestry has the potential to minimize deleterious environmental impacts. Presently, there is no systematic comparison of soil N<sub>2</sub>O emission between cropland agroforestry (CAF) and monoculture systems (MC) in Western Europe. Our study aimed to (1) quantify the spatial-temporal dynamics of soil N<sub>2</sub>O fluxes, and (2) determine their soil controlling factors in CAF and MC. We selected three sites with different soil types (Phaeozem, Cambisol, and Arenosol) in Germany. Each site has paired CAF and MC (agroforestry sites consisted of 12-m wide tree row and 48-m wide crop row and were established in 2007, 2008 and 2019 in these soil types, respectively). In each management system at each site, we had four replicate plots. In the CAF, we conducted measurements in the tree row and within the crop row at 1 m, 7 m, and 24 m from the tree row. We measured soil N<sub>2</sub>O fluxes monthly over 2 years (March 2018‒February 2020) using static vented chambers method. Following gas sampling, we also measured soil temperature, water-filled pore space (WFPS), and mineral N (NH<sub>4</sub><sup>+</sup> and NO<sub>3</sub><sup>-</sup>) within the same day. Across all sites, soil moisture and N availability were major drivers of soil N<sub>2</sub>O fluxes. Both CAF and MC were net sources of soil N<sub>2</sub>O at all sites. At the site with Phaeozem soil, annual soil N<sub>2</sub>O emissions from CAF in both years (1.84 ± 0.35 and 1.17 ± 0.30 kg N ha<sup>−</sup><sup>1</sup> yr<sup>−</sup><sup>1</sup>) were greater than MC (0.89 ± 0.09 and 0.34 ± 0.05 kg N ha<sup>−</sup><sup>1</sup> yr<sup>−</sup><sup>1</sup>) (<em>P</em> = 0.03). At the site with Cambisol soil, annual soil N<sub>2</sub>O emission did not differ between MC (0.49 ± 0.07 kg N ha<sup>−</sup><sup>1</sup> yr<sup>−</sup><sup>1</sup>) and CAF (0.73 ± 0.13 kg N ha<sup>−</sup><sup>1</sup> yr<sup>−</sup><sup>1</sup>) in 2018/2019 (<em>P</em> = 0.20) whereas in 2019/2020 MC was 134% greater than CAF (2.92 ± 0.45 and 1.25 ± 0.08 kg N ha<sup>−</sup><sup>1</sup> yr<sup>−</sup><sup>1</sup>, respectively; <em>P</em> = 0.03). The inter-annual differences were largely related to crop types and to climate conditions. At the site with Arenosol soil, there was no difference between CAF and MC. Our results indicated that CAF may decrease, maintain and/or increase soil N<sub>2</sub>O emissions compared to MC depending on tree age, soil characteristics, management and precipitation.</p>


1997 ◽  
Vol 128 (4) ◽  
pp. 445-460 ◽  
Author(s):  
J. WEBB ◽  
R. SYLVESTER-BRADLEY ◽  
F. M. SEENEY

In 74 experiments carried out in England from 1990 to 1994, cereal test crops were grown on sandy soils prone to nitrate leaching, following cereals, sugarbeet and potatoes. Measurements were made of the effects of the previous crops on soil mineral N, and on N recovery by the cereal test crop.Soil N supply in autumn (SNSa) was greater following potatoes (c. 100 kg/ha N) than following sugarbeet or cereals (c. 60 kg/ha N). However when potato crops to which organic manures had been applied were excluded, mean SNSa after potatoes was only c. 60 kg/ha. Soil N supply in spring (SNSs) following sugarbeet and potatoes was similar and at c. 56 kg/ha, c. 10 kg/ha greater than following cereals. Seasonal differences in SNSs were related to excess winter rainfall and soil water-holding capacity. Modelled leaching losses gave good agreement with overwinter changes in SNS (r=0·87), although SNSs was usually greater than predicted by the model. This discrepancy was considered to be due to overwinter mineralization, which was estimated from the intercept of the regression lines to be c. 40 kg/ha following cereals and potatoes, and c. 50 kg/ha following sugarbeet.Apparent net mineralization (AM) of N during the test crop growing season was c. 37, 53 and 63 kg/ha following cereals, sugarbeet and potatoes respectively. However, AM was c. 24 kg/ha N greater if the preceding potato crop had been given organic manures, but there was no difference in AM following manured and unmanured sugarbeet crops.Nitrogen offtake by the cereal test crop without fertilizer N (NoffN0) was c. 15·20 kg/ha greater following potatoes and sugarbeet than following cereals. The greater N offtake following potatoes is considered to be due to mineralization of organic manures applied to the potato crop, while the effect following sugarbeet appears to be due to mineralization of sugarbeet residues. At harvest, SMN was c. 38 kg/ha and similar for all three previous crops. It is concluded that mineralization of sugarbeet residues has taken place more quickly on these sandy soils than previously reported on soils of greater clay content. Only potatoes grown with organic manures leave greater N residues than cereals.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Helio Antonio Wood Joris ◽  
André Cesar Vitti ◽  
Risely Ferraz-Almeida ◽  
Rafael Otto ◽  
Heitor Cantarella

Abstract Long-term supply of synthetic nitrogen (N) has the potential to affect the soil N processes. This study aimed to (i) establish N response curves to find the best balance between inputs and outputs of N over four ratoons; (ii) use 15N-labeled fertilizer to estimate the N recovery efficiency of fertilizer applied in the current season as affected by the N management in the previous three years. Nitrogen rates (control, 60, 120, and 180 kg ha−1 N) were applied annually in the same plots after the 1st, 2nd, 3rd, and 4th sugarcane cycles. Sugarcane yield, N uptake, and N balance were evaluated. In the final season, 100 kg ha−1 of 15N was also applied in the microplots to evaluate the effect of previous N fertilization on N derived from fertilizer (NDF) and N derived from soil (NDS). Sugarcane yields increased linearly with the N rates over the four sugarcane-cycles. The best balance between the input of N through fertilizer and N removal by stalks was 90 kg ha−1 N in both the 1st and 2nd ratoons, and 71 kg ha−1 N in both the 3rd and 4th ratoons. Long-term application of N reduced NDF from 41 to 30 kg ha−1 and increased NDS from 160 to 180 kg ha−1 N. A key finding is that long-term N fertilization has the potential to affect soil N processes by increasing the contribution of soil N and reducing the contribution of N from fertilizer.


2004 ◽  
Vol 34 (3) ◽  
pp. 754-761 ◽  
Author(s):  
Ryan D Hangs ◽  
Ken J Greer ◽  
Catharine A Sulewski

During the early establishment phase, outplanted white spruce (Picea glauca (Moench) Voss) and jack pine (Pinus banksiana Lamb.) seedlings are vulnerable to lethargic growth or mortality because of interspecific competition for soil nutrients, particularly N. Accurately quantifying the degree of N competition is essential for supporting effective vegetation management (VM) decisions. This study evaluated the use of in situ burials of ion-exchange membrane (IEM; Plant Root SimulatorTM-probes) for quantifying differences in soil N supply rate between different VM treatments and the relationship of this N availability index to early growth of conifer seedlings at four boreal forest sites. At most sites, the effect of noncrop N uptake on soil N availability was apparent, with smaller NH4+-N, NO3–-N, and total dissolved inorganic N (DIN) supply rates in control plots than in VM plots. Total DIN supply rate was correlated (R2 = 0.60 to 0.73, P < 0.01) with seedling height, root-collar diameter, and stem volume growth. Ammonium-N supply rate was better correlated than NO3–-N supply rate with conifer seedling growth, which is in agreement with preferential NH4+-N uptake by conifer species. The results of this study support the use of in situ burials of IEM for measuring soil N availability during the early establishment phase.


Sign in / Sign up

Export Citation Format

Share Document