Mechanics of machine milking: I. Pressures in the teatcup assembly and liner wall movement

1964 ◽  
Vol 31 (3) ◽  
pp. 303-313 ◽  
Author(s):  
C. C. Thiel ◽  
P. A. Clough ◽  
D. N. Akam

SummaryA method is described of measuring pressures in a teatcup assembly using strain gauge transducers and simultaneously following movement of the liner wall by means of a cine camera. In preliminary experiments with a narrow bore type liner it was found that pressures below the teat could vary during a single pulsation cycle from a few inches of mercury below atmospheric pressure (inHg vacuum) to as high as 25 inHg vacuum in the absence of an airbleed. Bleeding air into the barrel of the liner or into the clawpiece considerably reduced fluctuation in pressure, and the vacuum barely rose above the nominal milking vacuum of 15 inHg. Reducing the rate of change of pressure in the pulsation chamber did not greatly affect the maximum vacuum obtained. Opening and closing of the liner by pressure change in the pulsation chamber was under some conditions considerably delayed by the pressure conditions existing inside the liner.It is suggested that inertia effects of milk in the cluster and the natural frequency of the system are largely responsible for the observed pressure changes under the teat.

1969 ◽  
Vol 50 (2) ◽  
pp. 501-513
Author(s):  
ELFED MORGAN

1. An increase in pressure elicited swimming in Nephtys, the number of worms induced to swim being related to the amplitude of the pressure change within the range of stimuli investigated. A decrease in pressure inhibited swimming. 2. The latency of the response to both an increase and a decrease also appears to be related to the magnitude of the stimulus, the worms responding more rapidly to the bigger pressure changes. 3. Brief pulses of pressure lasting 1 sec. elicited neither increase nor decrease in the level of swimming, but pulses of 5 sec. duration induced some individuals to swim. Releasing the pressure at the end of the 5 sec. period resulted in a decrease in the swimming activity below the pre-stimulus level. It is suggested that the different responses may be mediated via separate receptor mechanisms. 4. Phase-angle analysis of the responses to cyclical changes in pressure suggested that the worms were responding primarily to the rate of change of pressure, but the response did not appear to be a simple sine-function of the stimulus. The worms also seemed to be responding in part to some component occurring at twice the basic cycle.


2012 ◽  
Vol 524-527 ◽  
pp. 739-742
Author(s):  
Xi Hua Zhou ◽  
Jian Yuan Zhao ◽  
Xian Wei Xu

Atmospheric pressure changes on the fully mechanized top-coal caving has very significant effect to gas emission produce, through discussion to the mine gas emission source,and analysis the actual measured data.Get the result:with the rise of the ground atmospheric pressure ,the mine gas emission is absolutely reduced,and gas changes in return flow is after atmospheric pressure changes 0.5-1h later. Summarized measures to the gas emission suddenly increased.To the coal mine has guiding significance for production safety.


1954 ◽  
Vol 45 (3) ◽  
pp. 507-526 ◽  
Author(s):  
W. O. Haufe

Laboratory investigations with the mosquito AËdes aegypti (L.) have shown that air pressure has the following effects on flight activity:The effects of pressure changes are consistently large enough to constitute an important factor in determining activity provided the mosquitos are acclimatised first to a particular pressure level.The period of constant conditions necessary for complete acclimatisation was between three and six hours for all pressure conditions investigated.When the period of acclimatisation had been fulfilled, the flight activity was approximately the same at all levels of static pressure investigated between 550 mm. and 800 mm. Hg.After complete acclimatisation the activity following a moderate decrease in pressure was 1·5 to 2·4 times that following a similar increase in pressure when the general pressure level exceeded 735 mm. Hg.When the general pressure level was less than 735 mm. Hg., the activity following a decrease in pressure was less than that following an increase; it would appear that 735 mm. is a critical pressure level for the stock of A. aegypti employed.The activity during a uniform rise in pressure from 530 mm. to 730 mm. at 7·7 mm. /min. was at least 10 times that during a reverse fall in pressure fall in pressure at the same uniform rate.Provided the rate of change was not greater than 1 mm./sec., the maximum flight activity for falling pressures was observed at 780 mm. while the maximumfor rising pressures was observed at 735 mm.


2020 ◽  
Author(s):  
Lucas Pelascini ◽  
Philippe Steer ◽  
Laurent Longuevergne ◽  
Dimitri Lague

<p>Landslides are a complex phenomenon which triggering depends on both intrinsic properties of soils and rocks and external influences such as the action of weather conditions, or earthquakes. Around 6,000 landslides failed the 6<sup>th</sup> of September 2018 during the Mw 6.6 Hokkaido Eastern Iburi earthquake (Japan), one day after the typhoon Jebi hit the region. If the ground acceleration induced by the seismic waves likely played a major role in the triggering of these landslides, it is unclear how it compares to the respective role of rainfall and atmospheric pressure drop induced by the typhoon. The aim of this work is therefore to investigate the influence of weather conditions on landslide triggering, and more specifically to characterize the relative contributions of rainfall and atmospheric pressure changes on slope stability.</p><p>For this purpose, a simple model is developed to describe the two mechanisms and to compare their respective impact on slope stability. The model considers a homogeneous isotropic tilted infinite half-space in one dimension. Slope stability is estimated using a safety factor and a Mohr-Coulomb criterion. In the static case, groundwater is accounted for by adding an unconfined aquifer into the model. Analytical models based on diffusion equations have been used to describe the impact of rainfall and atmospheric pressure changes on slope stability (Iverson, 2000; Schulz, 2009). Extracting a response function from these models allows us to compute the stability change due to any rainfall or pressure time series. The model parameters are taken for a typical slope in Taiwan tilted with a 25° angle and with characteristics of a fully saturated loamy soil at 4 m depth and put under conditions similar to the Morakot typhoon, with more than 240 mm of rain on a 24 h period and an associate atmospheric pressure drop of 4 kPa.</p><p>Atmospheric pressure change and rainfall impacts the media in a very different way despite being associated to the same physical phenomenon, pressure diffusion. The atmospheric effect is instantaneous and directly affects the effective stress with a maximum of 4 kPa. This effect decreases over time while the pore pressure is adjusted to the atmosphere. The rainfall effect is delayed in time but has a greater impact on the effective stress, reaching 11.7 kPa almost 2 days after the end of the rainfall event. While atmospheric pressure does not change significantly the safety factor, it can exacerbate the effect of rainfall and advance the failure in time because of the respective temporal lag between the 2 processes.  Therefore, this study may lead to a better understanding of the effect of weather events such as typhoons on landslide triggering and slope stability. Our results call for revisiting in a more systematic approach the role of atmospheric pressure change on landslide triggering during extreme weather events. Because a 1D model may hide some effects associated to hillslope geometry, we then consider 2D numerical models which allow us to offer some first insights on slope stability during weather events, accounting for topography.</p>


2021 ◽  
Author(s):  
Lucas Pelascini ◽  
Philippe Steer ◽  
Laurent Longuevergne

<p>Landslides are one of the sources of natural hazards that cause damages and losses but also shapes the landscape. A better understanding the factors triggering or pre-conditioning landslide occurrence is therefore critical for risk assessment, with implications for hillslope erosion and landscape dynamics Triggering of catastrophic landslides is generally associated with events such as earthquakes or intense rainfalls. In Taiwan, a minimum of 22,705 landslides were reported during the typhoon Morakot in 2009 (Lin et al., 2011). Landslides triggered during storms are generally associated to the intensity and cumulated amount of rainfall, as water infiltration destabilize slopes (Iverson, 2000). However, a correlation has also been reported between slope stability and the change in atmospheric pressure (Schulz, 2009). Indeed, a change in air-pressure can lead in a readjustment in pore pressure, and cause fluid movements normal to the surface. The aim of this study is to characterize the effect of atmospheric pressure changes and define its specific contribution on slope stability when combined with rainfall</p><p>A 2-dimensional analytical model has been developed based on diffusion equations to describe the destabilization induced by water infiltration and atmospheric pressure changes induced by typhoons. As both mechanisms are function of pore pressure, and especially groundwater pore pressure, the water table within a finite-length hillslope is modelled using Townley’s (1995) analytical expression of water flow in a unconfined aquifer. The hillslope itself is a simple tilted half-space with a water divide at the top and a river at the toe forcing the water table to the surface. Slope stability is inferred through a safety factor computed using the coulomb criterion. Both rainfall infiltration and air pressure modify pore pressure through a diffusion process. While rainfall increases water table height and induce large increases in pore pressure within days or hours, , we show that atmospheric-induced pore pressure change is instantaneous and can occur even if the hillslope is fully saturated.</p><p>The model allows to separate the hillslope response into two regimes, upslope or downslope, where the destabilization is mainly linked to rainfall or to atmospheric pressure change, respectively.  Our results suggest that landslide occurring during storms in the downstream part of the hillslope are likely candidate for being triggered by atmospheric pressure change, in particular if the storm occurs with a humid initial condition. We show that the effect of atmospheric pressure changes is not negligible. On contrary, it is crucial to define the amplitude, timing and geometry of the hillslope instability, especially when combined to rainfall.</p>


2021 ◽  
Author(s):  
Lucas Pelascini ◽  
Philippe Steer ◽  
Maxime Mouyen ◽  
Laurent Longuevergne

Abstract. Landslides are often triggered by catastrophic events, among which earthquakes and rainfall are the most depicted. However, very few studies have focused on the effect of atmospheric pressure on slope stability, even though weather events such as typhoons are associated with significant atmospheric pressure changes. Indeed, both atmospheric pressure changes and rainfall-induced groundwater level change can generate pore pressure changes with similar amplitude. In this paper, we assess the respective impacts of atmospheric effects and rainfall over the stability of a hillslope. An analytical model of transient groundwater dynamics is developed to compute slope stability for finite hillslopes. Slope stability is evaluated through a safety factor based on the Mohr-Coulomb failure criterion. Both rainfall infiltration and atmospheric pressure variations, which impact slope stability by modifying the pore pressure of the media, are described by diffusion equations. The models have then been forced by weather data from different typhoons that were recorded over Taiwan. While rainfall infiltration can induce pore pressure change up to hundred kPa, its effects is delayed in time due to diffusion. To the contrary, atmospheric pressure change induces pore pressure changes not exceeding a few kPa, but its effect is instantaneous. Moreover, the effect of rainfall infiltration on slope stability decreases towards the toe of the hillslope and is cancelled where the water table reaches the surface, leaving atmospheric pressure change as the main driver of slope instability. This study allows for a better insight of slope stability through pore pressure analysis, and shows that atmospheric effects shouldn’t always be neglected.


2000 ◽  
Vol 39 (02) ◽  
pp. 200-203
Author(s):  
H. Mizuta ◽  
K. Yana

Abstract:This paper proposes a method for decomposing heart rate fluctuations into background, respiratory and blood pressure oriented fluctuations. A signal cancellation scheme using the adaptive RLS algorithm has been introduced for canceling respiration and blood pressure oriented changes in the heart rate fluctuations. The computer simulation confirmed the validity of the proposed method. Then, heart rate fluctuations, instantaneous lung volume and blood pressure changes are simultaneously recorded from eight normal subjects aged 20-24 years. It was shown that after signal decomposition, the power spectrum of the heart rate showed a consistent monotonic 1/fa type pattern. The proposed method enables a clear interpretation of heart rate spectrum removing uncertain large individual variations due to the respiration and blood pressure change.


2012 ◽  
Vol 33 (7) ◽  
pp. 1730-1760 ◽  
Author(s):  
Rajmund Przybylak ◽  
Przemysław Wyszyński ◽  
Zsuzsanna Vízi ◽  
Joanna Jankowska

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mehdi Dastorani ◽  
Behnam Malekpour ◽  
Mohsen AminSobhani ◽  
Mohammadsadegh Alemrajabi ◽  
Arezoo Mahdian ◽  
...  

Abstract Background Bacterial microleakage is an important cause of apical periodontitis and endodontic treatment failure. This study aimed to assess the bacterial microleakage of nano-mineral trioxide aggregate (nano-MTA) as a sealer, Endoseal MTA, and GuttaFlow Bioseal sealers in atmospheric pressure, and simulated underwater diving and aviation conditions. Methods In this in vitro, experimental study, 180 extracted single-rooted teeth were cleaned and shaped, and were then randomly divided into three groups for single-cone obturation using Endoseal MTA, GuttaFlow Bioseal, or nano-MTA as a sealer. Each group was then randomly divided into three subgroups, and subjected to ambient atmospheric pressure, 2 atm pressure (to simulate underwater diving), and 0.5 atm pressure (to simulate aviation) using a custom-made pressure chamber. The teeth then underwent microbial leakage test using Streptococcus mutans (S. mutans), and the percentage of samples showing microleakage was recorded for up to 1 month, and analyzed using the Chi-square test. Results The three sealer groups were significantly different regarding bacterial microleakage (P < 0.05). The nano-MTA group showed significantly higher microleakage after 15 days than the other two groups (P = 0.006). The effect of pressure on bacterial microleakage was not significant in any sealer group (P > 0.05). Conclusion Within the limitations of this in vitro study, it may be concluded that single-cone obturation technique using nano-MTA as a sealer results in lower resistance to bacterial microleakage compared with the use of GuttaFlow Bioseal, and Endoseal MTA. Pressure changes in simulated underwater diving and aviation conditions had no significant effect on bacterial microleakage. Trial Registration Number This is not a human subject research.


1988 ◽  
Vol 97 (2) ◽  
pp. 199-206 ◽  
Author(s):  
Yehuda Finkelstein ◽  
Yuval Zohar ◽  
Yoav P. Talmi ◽  
Nelu Laurian

The Toynbee maneuver, swallowing when the nose is obstructed, leads in most cases to pressure changes in one or both middle ears, resulting in a sensation of fullness. Since first described, many varying and contradictory comments have been reported in the literature concerning the type and amount of pressure changes both in the nasopharynx and in the middle ear. In our study, the pressure changes were determined by catheters placed into the nasopharynx and repeated tympanometric measurements. New information concerning the rapid pressure variations in the nasopharynx and middle ear during deglutition with an obstructed nose was obtained. Typical individual nasopharyngeal pressure change patterns were recorded, ranging from a maximal positive pressure of + 450 to a negative pressure as low as −320 mm H2O.


Sign in / Sign up

Export Citation Format

Share Document