Response surface methodology as a tool for modelling galacto-oligosaccharide production

2017 ◽  
Vol 84 (4) ◽  
pp. 464-470
Author(s):  
Claudia I. Vénica ◽  
Carina V. Bergamini ◽  
María C. Perotti

The experiments reported in this research paper describe the effects of β-galactosidase enzyme dose and cheese whey amount, on the maximum concentration and yield of galacto-oligosaccahride (GOS) and reaction time. The experimental plan was based on central composite rotational design (CCRD) and modelled by response surface methodology (RSM). The results indicate that the proposed mathematical models could adequately describe the concentration and yield of GOS and the reaction time within the limits of the factors that are being investigated. The variance analysis shows high values of coefficients of determination (>0·97) while no significant lack of fit was evident. Hence, the models could be employed to select reaction conditions applied in the manufacture of products enriched in bioactive compounds with high value-added.

2012 ◽  
Vol 622-623 ◽  
pp. 162-165
Author(s):  
Da Wei Yin ◽  
Gang Tao Liang ◽  
Xiao Ming Sun ◽  
Yu Ting Liu

Acetylferrocene was synthesized by acetyl chloride and ferrocene as raw materials, dichloromethane as the solvent, and ZnO as catalyst. Response surface methodology based on three-level, three-variable central composite rotable design was used to evaluate the interactive effects of the ratio of acetyl chloride and ferrocene(2-4), the amount of ZnO(1.0-1.3mol), reaction time(30-60 min)on the percentage yield of acylferrocene. The optimal raw material ratio, amount catalyst, and reaction time was 3:1, 1.19mol, 40min. Under the optimum conditions, the actual experimental yield can reach 86.72%.


2017 ◽  
Vol 2 (1) ◽  
pp. 1-10 ◽  
Author(s):  
O. S. Aliozo ◽  
L. N. Emembolu ◽  
O. D. Onukwuli

Abstract In this research work, melon oil was used as feedstock for methyl ester production. The research was aimed at optimizing the reaction conditions for methyl ester yield from the oil. Response surface methodology (RSM), based on a five level, four variable central composite designs (CCD)was used to optimize and statistically analyze the interaction effect of the process parameter during the biodiesel production processes. A total of 30 experiments were conducted to study the effect of methanol to oil molar ratio, catalyst weight, temperature and reaction time. The optimal yield of biodiesel from melon oil was found to be 94.9% under the following reaction conditions: catalyst weight - 0.8%, methanol to oil molar ratio - 6:1, temperature - 55°C and reaction time of 60mins. The quality of methyl ester produced at these conditions was within the American Society for Testing and Materials (ASTM D6751) specification.


2015 ◽  
Vol 10 (2) ◽  
pp. 123-133 ◽  
Author(s):  
Mohammadreza Sabzimaleki ◽  
Barat Ghobadian ◽  
Mohsen Mazloom Farsibaf ◽  
Gholamhassan Najafi ◽  
Masoud Dehghani Soufi ◽  
...  

Abstract Production of biodiesel from castor oil (CO) using ultrasound-assisted has been investigated in this study. The objective of the present work was therefore to determine the relationship between various important parameters of the alkaline-catalyzed transesterification process to obtain a high reaction yield in a short time. The response surface methodology (RSM) was used to statistically analyze and optimize the operating parameters of the process. A central composite design (CCD) was approved to study the effects of the reaction time, the methanol to oil molar ratio, the ultrasonic cycle and the ultrasonic amplitude on reaction yield. The optimum conditions for alkaline-catalyzed transesterification of CO was found to be a reaction time of 540 s, methanol to oil molar ratio of 8.15:1,ultrasonic cycle of 0.73% and ultrasonic amplitude 64.34%. By exerting the calculated optimum condition in the process, the reaction yield reached 87.0494%. The results from the RSM analysis indicated that the reaction time has the most significant effect on the reaction yield.


2014 ◽  
Vol 20 (1) ◽  
pp. 127-134 ◽  
Author(s):  
Kumar Singh ◽  
Mausumi Mukhopadhyay

In the present work, solvent free olive oil glycerolysis for the monoglycerides (MG) and diglycerides (DG) production with an immobilized Candida rugosa lipase was studied. MG and DG production were optimized using experiment design techniques and response surface methodology (RSM). RSM based on five-level, a five-variable central composite design (CCD) was used to optimize MG and DG production: reaction time, temperature, molar ratio of glycerol to oil, amount of lipase, and water content in glycerol. The reaction time, temperature, and amount of lipase were observed to be the most significant factors on the process response. The immobilized Candida rugosa lipase revealed optimum yield of MG and DG as 38.71 and 40.45 wt% respectively following a 5h reaction time with 0.025 g of lipase and 5% water content in glycerol at 40?C temperature. The yield of MG and DG production can be enhanced 1.5 fold by RSM.


2019 ◽  
Vol 4 (2) ◽  
pp. 51
Author(s):  
Falin Tristanti Ayu ◽  
Izzati Rahmi HG ◽  
Yudiantri Asdi

Metode Permukaan Respon atau Response Surface Methodology adalah gabungan dari teknik matematika dan statistika yang digunakan dalam pemodelan dan analisis dimana respon yang diamati dipengaruhi oleh sejumlah variabel. Metode permukaan respon digunakan untuk mencari taraf-taraf peubah bebas yang dapat mengoptimalkan respon. Dengan metode ini dapat diketahui model empirik yang menyatakan hubungan antara variabel-variabel independen dengan variabel respon, serta dapat diketahui nilai variabel-variabel independen yang menyebabkan nilai variabel respon menjadi optimal. Eksperimen dengan metode permukaan respon dilakukan dalam dua tahap yaitu eksperimen tahap I dan eksperimen tahap II. Desain eksperimen yang digunakan pada eksperimen tahap I adalah desain faktorial dua level sedangkan desain eksperimen yang digunakan pada eksperimen tahap II adalah Central Composite Design (CCD). Tahapan dalam metode permukaan respon pada intinya yaitu mencari fungsi aproksimasi yang menyatakan hubungan antara variabel independen dengan variabel respon, mengestimasi parameter-parameter dari fungsi aproksimasi yang diperoleh dengan metode kuadrat terkecil dan selanjutnya dilakukan analisis pengepasan permukaan. Karakteristik permukaan respon digunakan untuk menentukan apakah jenis titik stasionernya maksimum, minimum atau titik pelana. Prosedur pengujian yang dilakukan dalam metode permukaan respon diantaranya uji kesesuaian model regresi (lack of fit), uji parameter regresi secara serentak dan pengujian asumsi residual.Kata Kunci: Desain eksperimen, Metode Permukaan Respon (Response Surface Methodology), Two Level Factorial Design, Central Composite Design (CCD)


2021 ◽  
Vol 9 (2) ◽  
pp. 470-479

The removal percentage of color from institutional wastewater was studied using an electrocoagulation process with different electrode combination at the anode and cathode. This was done by considering operational parameters such as pH at (3, 6 and 9), current at (0.03A, 0.06A and 0.09A) and reaction time at (20, 40 and 60 minutes). When electrode combined in the form of Al-Al (anode-Cathode/Cathode-Anode) and Fe-Fe (anode-Cathode/Cathode-Anode) the percentage removal of color was up to 95.50% and 97.24% respectively. On the other hand around 98.03% and 91.95% of color was removed when Al-Fe (Anode-Cathode) and Fe-Al (Anode-Cathode) combined at pH 9 and 60 minutes of reaction time respectively. Central composite design from response surface methodology was used up to analysis the statistical and mathematical data based on experimental results such as the model was significant for all electrode combinations. Similarly a quadratic model was used for further study of operational effects on the removal (%) of color from institutional wastewater. The value of coefficient of the determination (R2) also indicated the model was a good fit as well as optimization was done by Response Surface Methodology.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 889
Author(s):  
Hao Peng ◽  
Jing Guo ◽  
Hongzhi Qiu ◽  
Caiqiong Wang ◽  
Chenyu Zhang ◽  
...  

A highly efficient reduction process of Cr (VI) with biochar was conducted in this paper. The results showed that nearly 100% Cr (VI) was reduced at selected reaction conditions: Dosage of biochar at m (C)/m(Cr) = 3.0, reaction temperature of 90 °C, reaction time of60 min, and concentration of H2SO4 of 20 g/L. The reduction kinetics analysis demonstrated that the reduction of Cr (VI) fitted well with the pseudo-first-order model and the apparent activation energy was calculated to be 40.24 kJ/mol. Response surface methodology confirmed that all of the experimental parameters had a positive effect on the reduction of Cr (VI). The influence of each parameter on the reduction process followed the order: Dosage of biochar>concentration of H2SO4>reaction temperature >reaction time. This paper provides a versatile strategy for the treatment of wastewater containing Cr (VI) and shows a bright tomorrow for wastewater treatment.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1537
Author(s):  
Gayathri Arun ◽  
Muhammad Ayoub ◽  
Zulqarnain Zulqarnain ◽  
Umesh Deshannavar ◽  
Mohd Hizami Mohd Mohd Yusoff ◽  
...  

Biodiesel production has gained considerable importance over the last few decades due to the increase in fossil fuel prices as well as toxic emissions of oxygen and nitrogen. The production of biodiesel via catalytic transesterification produces crude glycerol as a co-product along with biodiesel, amounting to 10% of the total biodiesel produced. Glycerol has a low value in its impure form, and the purification of glycerol requires sophisticated technologies and is an expensive process. The conversion of crude glycerol into value-added chemicals such as solketal is the best way to improve the sustainability of biodiesel synthesis using the transesterification reaction. Therefore, the conversion of crude glycerol into the solketal was investigated in a batch reactor simulation model developed by the Aspen Plus V11.0. The non-random two liquid theory (NRTL) method was used as a thermodynamic property package to study the effect of four input ketalization parameters. The model was validated with the findings of previous experimental studies of solketal synthesis using sulfuric acid as a catalyst. The influence of the following operating parameters was investigated: reaction time of 10,000 to 60,000 s, reaction temperature of 303 to 323 K, acetone to glycerol molar ratio of 2:1 to 10:1, and catalyst concentration of 0.005 to 0.03 wt %. The optimum solketal yield of 81.36% was obtained at the optimized conditions of 313 K, 9:1, 0.03 wt %, and 40,000 s. The effect of each input parameter on the ketalization process and interaction between input and output parameters was investigated by using the response surface methodology (RSM) optimizer. The relationship between independent and response variables developed by RSM fit most of the simulation data, which showed the accuracy of the model. A second-order differential equation fit the simulation data well and showed an R2 value of 0.99. According to the findings of RSM, the influence of catalyst amount, acetone to glycerol molar ratio, and reaction time were more significant on solketal yield. The effect of temperature on the performance of the reaction was not found to be significant because of the exothermic nature of the process. The findings of this study showed that biodiesel-derived glycerol can be effectively utilized to produce solketal, which can be used for a wider range of applications such as a fuel additive. However, further work is required to enhance the solketal yield by developing new heterogeneous catalysts so that the industrial implementation of its production can be made possible.


2021 ◽  
Vol 1192 (1) ◽  
pp. 012019
Author(s):  
S I S Shaharuddin ◽  
N B A Aziz ◽  
N Bacho ◽  
N K M Khairussaleh ◽  
A Tumian ◽  
...  

Abstract The wax used in the batik industry plays a significant role as its composition dictates the ease of wax rendering, dye layering, and wax removal process. This study aims to evaluate the effect of dammar additions on soy wax/beeswax blends based on the mass loss (%) of the wax-covered cotton fabric in 100°C water. Central composite design (CCD), a subset of response surface methodology (RSM) was used to develop a response model (Y: mass loss %) for three independent variables (X1:beeswax, X2:soy wax, X3:dammar). The final quadratic response model obtained (F value =5.43, lack of fit F value = 4.70, adequate precision = 7.65) was proposed in this study. ANOVA analysis showed that the standard error of design was relatively small, ranging between 0.43 to 1.18 for the design space. It was deduced from the response model, that increasing the dammar content in the soy wax/beeswax blends increases the mass loss (%), possibly due to the compositional inhomogeneity of the blends. The result of this study shows great potentials in formulating new soy wax-based compositions that produce varying degrees of ease of wax removal for the batik industry.


2009 ◽  
Vol 12 (13) ◽  
pp. 69-76
Author(s):  
Huong Thi Thanh Le ◽  
Tan Viet Le ◽  
Tan Minh Phan ◽  
Hoa Thi Viet Tran

In this study, biodiesel was produced from fat of tra catfish by methanolysis reaction with KOH/y-A12O3 heterogenous catalyst. This research was carried out using response surface methodology (RSM) based on four-variable central composite design (CCD) with a = 1,54671. The transesterification process variables and their investigated ranges were methanol/fat molar ratio (X1: 7/1 - 9/1), catalyst concentration (X2: 5%-7%), reaction time (X3: 60 min - 120 min), and reaction temperature (X4: 55 °C - 65 °C). The result show the biodiesel yield could be reach up to 92,8 % using the following optimized reaction condition: molar ratio of methanol/fat at 8,26/1, catalyst concentration of 5,79 %, reaction time of 96 min, and reaction temperature at 59,6 °C.


Sign in / Sign up

Export Citation Format

Share Document