scholarly journals Mixing in a density-driven current flowing down a slope in a rotating fluid

2008 ◽  
Vol 604 ◽  
pp. 369-388 ◽  
Author(s):  
CLAUDIA CENEDESE ◽  
CLAUDIA ADDUCE

We discuss laboratory experiments investigating mixing in a density-driven current flowing down a sloping bottom, in a rotating homogenous fluid. A systematic study spanning a wide range of Froude, 0.8 < Fr < 10, and Reynolds, 10 < Re < 1400, numbers was conducted by varying three parameters: the bottom slope; the flow rate; and the density of the dense fluid. Different flow regimes were observed, i.e. waves (non-breaking and breaking) and turbulent regimes, while changing the above parameters. Mixing in the density-driven current has been quantified within the observed regimes, and at different locations on the slope. The dependence of mixing on the relevant non-dimensional numbers, i.e. slope, Fr and Re, is discussed. The entrainment parameter, E, was found to be dependent not only on Fr, as assumed in previous studies, but also on Re. In particular, mixing increased with increasing Fr and Re. For low Fr and Re, the magnitude of the mixing was comparable to mixing in the ocean. For large Fr and Re, mixing was comparable to that observed in previous laboratory experiments that exhibited the classic turbulent entrainment behaviour.

1986 ◽  
Vol 173 ◽  
pp. 431-471 ◽  
Author(s):  
J. S. Turner

The entrainment assumption, relating the inflow velocity to the local mean velocity of a turbulent flow, has been used successfully to describe natural phenomena over a wide range of scales. Its first application was to plumes rising in stably stratified surroundings, and it has been extended to inclined plumes (gravity currents) and related problems by adding the effect of buoyancy forces, which inhibit mixing across a density interface. More recently, the influence of viscosity differences between a turbulent flow and its surroundings has been studied. This paper surveys the background theory and the laboratory experiments that have been used to understand and quantify each of these phenomena, and discusses their applications in the atmosphere, the ocean and various geological contexts.


2017 ◽  
Vol 47 (3) ◽  
pp. 485-498 ◽  
Author(s):  
Luisa Ottolenghi ◽  
Claudia Cenedese ◽  
Claudia Adduce

AbstractDense oceanic overflows descend over the rough topography of the continental slope entraining and mixing with surrounding waters. The associated dilution dictates the fate of these currents and thus is of fundamental importance to the formation of deep water masses. The entrainment in a dense current flowing down a sloping bottom in a rotating homogeneous fluid is investigated using laboratory experiments, focusing on the influence of the bottom roughness on the flow dynamics. The roughness is idealized by an array of vertical rigid cylinders and both their spacing and height are varied as well as the inclination of the sloping bottom. The presence of the roughness is generally observed to decelerate the dense current, with a consequent reduction of the Froude number, when compared to the smooth bottom configuration. However, the dilution of the dense current due to mixing with the ambient fluid is enhanced by the roughness elements, especially for low Froude numbers. When the entrainment due to shear instability at the interface between the dense current and the ambient fluid is low, the additional turbulence and mixing arising at the bottom of the dense current due to the roughness elements strongly affects the dilution of the current. Finally, a strong dependence of the entrainment parameter on the Reynolds number is observed.


1999 ◽  
Vol 381 ◽  
pp. 199-223 ◽  
Author(s):  
C. CENEDESE ◽  
P. F. LINDEN

We discuss laboratory experiments with a continuous source or sink of fluid in a two-layer rotating environment which produces anticyclonic and cyclonic vortices, respectively. Experiments were carried out with a sloping bottom in order to simulate the β-effect and they were conducted for different values for the source/sink flow rate Q and the Coriolis parameter f. The Rossby number Ro of these vortices was small but finite and the flow was expected to be quasi-geostrophic. The qualitative behaviour of the anticyclonic and cyclonic vortices was generally similar, but it depended on the flow rate. For low flow rates, a single vortex formed at the source and extended to the west. At higher flow rates, the vortex broke free from the source and moved to the west; this vortex was then followed sequentially by other vortices behaving similarly. The westward velocity U of these vortices was calculated and compared with the speed Us of a linear topographic Rossby wave. For multiple vortices the westward velocities were greater than Us while for a single vortex produced by a low flow rate the velocity was less than Us. Significant asymmetry between the anticyclonic and cyclonic vortices was observed in the transition zone from single to multiple vortices which implies that ageostrophic effects were still present in the flow.


2005 ◽  
Vol 127 (5) ◽  
pp. 1029-1037 ◽  
Author(s):  
L. O. Schunk ◽  
G. F. Nellis ◽  
J. M. Pfotenhauer

Growing interest in larger scale pulse tubes has focused attention on optimizing their thermodynamic efficiency. For Stirling-type pulse tubes, the performance is governed by the phase difference between the pressure and mass flow, a characteristic that can be conveniently adjusted through the use of inertance tubes. In this paper we present a model in which the inertance tube is divided into a large number of increments; each increment is represented by a resistance, compliance, and inertance. This model can include local variations along the inertance tube and is capable of predicting pressure, mass flow rate, and the phase between these quantities at any location in the inertance tube as well as in the attached reservoir. The model is verified through careful comparison with those quantities that can be easily and reliably measured; these include the pressure variations along the length of the inertance tube and the mass flow rate into the reservoir. These experimental quantities are shown to be in good agreement with the model’s predictions over a wide range of operating conditions. Design charts are subsequently generated using the model and are presented for various operating conditions in order to facilitate the design of inertance tubes for pulse tube refrigerators. These design charts enable the pulse tube designer to select an inertance tube geometry that achieves a desired phase shift for a given level of acoustic power.


1987 ◽  
Vol 109 (2) ◽  
pp. 150-155 ◽  
Author(s):  
M. P. Malkin ◽  
S. A. Klein ◽  
J. A. Duffie ◽  
A. B. Copsey

A modification to the f-Chart method has been developed to predict monthly and annual performance of thermosyphon solar domestic hot water systems. Stratification in the storage tank is accounted for through use of a modified collector loss coefficient. The varying flow rate throughout the day and year in a thermosyphon system is accounted for through use of a fixed monthly “equivalent average” flow rate. The “equivalent average” flow rate is that which balances the thermosyphon buoyancy driving force with the frictional losses in the flow circuit on a monthly average basis. Comparison between the annual solar fraction predited by the modified design method and TRNSYS simulations for a wide range of thermosyphon systems shows an RMS error of 2.6 percent.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Carl M. Sangan ◽  
James A. Scobie ◽  
Gary D. Lock

This paper deals with a numerical study aimed at the characterization of hot gas ingestion through turbine rim seals. The numerical campaign focused on an experimental facility which models ingress through the rim seal into the upstream wheel-space of an axial-turbine stage. Single-clearance arrangements were considered in the form of axial- and radial-seal gap configurations. With the radial-seal clearance configuration, CFD steady-state solutions were able to predict the system sealing effectiveness over a wide range of coolant mass flow rates reasonably well. The greater insight of flow field provided by the computations illustrates the thermal buffering effect when ingress occurs: for a given sealing flow rate, the effectiveness on the rotor was significantly higher than that on the stator due to the axial flow of hot gases from stator to rotor caused by pumping effects. The predicted effectiveness on the rotor was compared with a theoretical model for the thermal buffering effect showing good agreement. When the axial-seal clearance arrangement is considered, the agreement between CFD and experiments worsens; the variation of sealing effectiveness with coolant flow rate calculated by means of the simulations display a distinct kink. It was found that the “kink phenomenon” can be ascribed to an over-estimation of the egress spoiling effects due to turbulence modelling limitations. Despite some weaknesses in the numerical predictions, the paper shows that CFD can be used to characterize the sealing performance of axial- and radial-clearance turbine rim seals.


2021 ◽  
Author(s):  
Guillaume Chambon ◽  
Thierry Faug ◽  
Mohamed Naaim

&lt;p&gt;Wet snow avalanches present distinctive features such as unusual trajectories, peculiar deposit shapes, and a rheological behavior displaying a combination of granular and pasty features depending on the actual snow liquid water content. Complex transitions between dry (cold) and wet (hot) flow regimes can also occur during a single avalanche flow. In an attempt to account for this complexity, we report on numerical simulations of avalanches using a frictional-cohesive rheology implemented in a depth-averaged shallow-flow model. Through extensive sensitivity studies on synthetic and real topographies, we show that cohesion plays a key role to enrich the physics of the simulated flows, and to represent realistic avalanche behaviors. First, when coupled to a proper treatment of the yielding criterion, cohesion provides a way to define objective stopping criteria for the flow, independently of the issues incurred by artificial diffusion of the numerical scheme. Second, and more importantly, the interplay between cohesion and friction gives raise to a variety of nontrivial physical effects affecting the dynamics of the avalanches and the morphology of the deposits. The relative weights of frictional and cohesive contributions to the overall stress are investigated as a function of space and time during the propagation, and related to the formation of specific features such as lateral lev&amp;#233;es, hydraulic jumps, etc. This study represents a first step towards robust avalanches simulations, spanning the wide range of possible flow regimes, through shallow-flow approaches. Future improvements involving more refined cohesion parameterizations will be discussed.&lt;/p&gt;


Author(s):  
Ali Hassannejadmoghaddam ◽  
Boris Kutschelis ◽  
Frank Holz ◽  
Tomas Börjesson ◽  
Romuald Skoda

Abstract Unsteady 3D flow simulations on a twin-screw pump are performed for an assessment of the radial, circumferential and flank gap flow effect on the pump performance. By means of the overset grid technique rigid computational grids around the counter-rotating spindles yield a high cell quality and a high spatial resolution of the gap backflow down to the viscous sublayer in terms of y^+ &lt; 1 . An optimization of the hole-cutting process is performed on a generic gap flow and transferred to the complex moving gaps in the pump. Grid independence is ensured, and conservation properties of the overset grid interpolation technique are assessed. Simulation results are validated against measured pump characteristics. Pump performance in terms of pressure build-up along the flow path through the spindles and volume flow rate is presented for a wide range of spindle speed and pump head. Flow rate fluctuations are found to depend on head but hardly on speed. By a profound assessment of the respective radial, circumferential and flank gap contribution to the total backflow, the importance of the most complex flank gap is pointed out. Backflow rate characteristics in dependence on the pump head and the pump speed are presented.


Author(s):  
Ben Hadj-Daoud H ◽  
◽  
Ben Salem I ◽  
Boughalleb-M’Hamdi N ◽  
◽  
...  

Background: Colletotrichum gloeosporioides is important plant pathogens on a wide range of plant hosts such as citrus causing pre- or post-harvest infections as anthracnose, post-bloom fruit drop, tearstain and stem-end rot on fruit, or wither-tip of twigs. Method: The optimization of growth conditions of this pathogen was performed (solid media, temperature, pH and water potential under laboratory experiments). Results: Our results revealed that the maximum radial growth of C. gloeosporioides was recorded on SDA medium. All isolates were able to grow on PDA at temperatures of 15 and 30°C (over 0.7cm/day). Optimal growth radial was recorded at pH 5, 6, 7 and 8. Similar responses were obtained with both salt types, but, in general, C. gloeosporioides was more tolerant to KCl than NaCl. Conclusion: Studies of cultural, morphological traits of the pathogen are prominent to understand the response of the pathogen in different environmental and nutritional conditions.


Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


Sign in / Sign up

Export Citation Format

Share Document