Interaction of finite-amplitude waves with vertically sheared current fields

2009 ◽  
Vol 627 ◽  
pp. 179-213 ◽  
Author(s):  
OKEY G. NWOGU

A computationally efficient numerical method is developed to investigate nonlinear interactions between steep surface gravity waves and depth-varying ocean currents. The free-surface boundary conditions are used to derive a coupled set of equations that are integrated in time for the evolution of the free-surface elevation and tangential component of the fluid velocity at the free surface. The vector form of Green's second identity is used to close the system of equations. The closure relationship is consistent with Helmholtz's decomposition of the velocity field into rotational and irrotational components. The rotational component of the flow field is given by the Biot–Savart integral, while the irrotational component is obtained from an integral of a mixed distribution of sources and vortices over the free surface. Wave-induced changes to the vorticity field are modelled using the vorticity transport equation. For weak currents, an explicit expression is derived for the wave-induced vorticity field in Fourier space that negates the need to numerically solve the vorticity transport equation. The computational efficiency of the numerical scheme is further improved by expanding the kernels of the boundary and volume integrals in the closure relationship as a power series in a wave steepness parameter and using the fast Fourier transform method to evaluate the leading-order contribution to the convolution integrals. This reduces the number of operations at each time step from O(N2) to O(NlogN) for the boundary integrals and O[(NM)2] to O(NlogN) for the volume integrals, where N is the number of horizontal grid points and M is the number of vertical layers, making the model an order of magnitude faster than traditional boundary/volume integral methods. The numerical model is used to investigate nonlinear wave–current interaction in depth-uniform current fields and the modulational instability of gravity waves in an exponentially sheared current in deep water. The numerical results demonstrate that the mean flow vorticity can significantly affect the growth rate of extreme waves in narrowband sea states.

1975 ◽  
Vol 70 (2) ◽  
pp. 257-266 ◽  
Author(s):  
B. D. Dore

The time-averaged vorticity field within the free-surface boundary layer associated with a general class of propagating gravity waves is considered. The principal results are applied in a calculation of the mass transport velocity field for edge waves.


Author(s):  
Shanti Bhushan ◽  
Pablo Carrica ◽  
Jianming Yang ◽  
Frederick Stern

Scalability studies and computations using the largest grids to date for free-surface flows are performed using message-passing interface (MPI)-based CFDShip-Iowa toolbox curvilinear (V4) and Cartesian (V6) grid solvers on Navy high-performance computing systems. Both solvers show good strong scalability up to 2048 processors, with V6 showing somewhat better performance than V4. V6 also outperforms V4 in terms of the memory requirements and central processing unit (CPU) time per time-step per grid point. The explicit solvers show better scalability than the implicit solvers, but the latter allows larger time-step sizes, resulting in a lower total CPU time. The multi-grid HYPRE solver shows better scalability than the portable, extensible toolkit for scientific computation solver. The main scalability bottleneck is identified to be the pressure Poisson solver. The memory bandwidth test suggests that further scalability improvements could be obtained by using hybrid MPI/open multi-processing (OpenMP) parallelization. V4-detached eddy simulation (DES) on a 300 M grid for the surface combatant model DTMB 5415 in the straight-ahead condition provides a plausible description of the vortical structures and mean flow patterns observed in the experiments. However, the vortex strengths are over predicted and the turbulence is not resolved. V4-DESs on up to 250 M grids for DTMB 5415 at 20° static drift angle significantly improve the forces and moment predictions compared to the coarse grid unsteady Reynolds averaged Navier–Stokes, due to the improved resolved turbulence predictions. The simulations provide detailed resolution of the free-surface and breaking pattern and vortical and turbulent structures, which will guide planned experiments. V6 simulations on up to 276 M grids for DTMB 5415 in the straight-ahead condition predict diffused vortical structures due to poor wall-layer predictions. This could be due to the limitations of the wall-function implementation for the immersed boundary method.


Author(s):  
Gerasimos A. Kolokythas ◽  
Athanassios A. Dimas

In the present study, numerical simulations of the free-surface flow, developing by the propagation of nonlinear water waves over a rippled bottom, are performed assuming that the corresponding flow is two-dimensional, incompressible and viscous. The simulations are based on the numerical solution of the Navier-Stokes equations subject to the fully-nonlinear free-surface boundary conditions and the suitable bottom, inflow and outflow boundary conditions. The equations are properly transformed so that the computational domain becomes time-independent. For the spatial discretization, a hybrid scheme with finite-differences and Chebyshev polynomials is applied, while a fractional time-step scheme is used for the temporal discretization. A wave absorption zone is placed at the outflow region in order to efficiently minimize reflection of waves by the outflow boundary. The numerical model is validated by comparison to the analytical solution for the laminar, oscillatory, current flow which develops a uniform boundary layer over a horizontal bottom. For the propagation of finite-amplitude waves over a rigid rippled bed, the case with wavelength to water depth ratio λ/d0 = 6 and wave height to wavelength ratio H0/λ = 0.05 is considered. The ripples have parabolic shape, while their dimensions — length and height — are chosen accordingly to fit laboratory and field data. Results indicate that the wall shear stress over the ripples and the form drag forces on the ripples increase with increasing ripple height, while the corresponding friction force is insensitive to this increase. Therefore, the percentage of friction in the total drag force decreases with increasing ripple height.


Author(s):  
Xinshu Zhang ◽  
Robert F. Beck

Three-dimensional, time-domain, wave-body interactions are studied in this paper for cases with and without forward speed. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength panels on the exact submerged body surface, the boundary integral equations are solved numerically at each time step. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing submerged body geometry. The desingularized method applied on the free surface produces non-singular kernels in the integral equations by moving the fundamental singularities a small distance outside of the fluid domain. Constant strength panels are used for bodies with any arbitrary shape. Extensive results are presented to validate the efficiency of the present method. These results include the added mass and damping computations for a hemisphere. The calm water wave resistance for a submerged spheroid and a Wigley hull are also presented. All the computations with forward speed are started from rest and proceed until a steady state is reached. Finally, the time-domain forced motion results for a modified Wigley hull with forward speed are shown and compared with the experiments for both linear computations and body-exact computations.


2013 ◽  
Vol 70 (12) ◽  
pp. 3756-3779 ◽  
Author(s):  
Kaoru Sato ◽  
Takenari Kinoshita ◽  
Kota Okamoto

Abstract A new method is proposed to estimate three-dimensional (3D) material circulation driven by waves based on recently derived formulas by Kinoshita and Sato that are applicable to both Rossby waves and gravity waves. The residual-mean flow is divided into three, that is, balanced flow, unbalanced flow, and Stokes drift. The latter two are wave-induced components estimated from momentum flux divergence and heat flux divergence, respectively. The unbalanced mean flow is equivalent to the zonal-mean flow in the two-dimensional (2D) transformed Eulerian mean (TEM) system. Although these formulas were derived using the “time mean,” the underlying assumption is the separation of spatial or temporal scales between the mean and wave fields. Thus, the formulas can be used for both transient and stationary waves. Considering that the average is inherently needed to remove an oscillatory component of unaveraged quadratic functions, the 3D wave activity flux and wave-induced residual-mean flow are estimated by an extended Hilbert transform. In this case, the scale of mean flow corresponds to the whole scale of the wave packet. Using simulation data from a gravity wave–resolving general circulation model, the 3D structure of the residual-mean circulation in the stratosphere and mesosphere is examined for January and July. The zonal-mean field of the estimated 3D circulation is consistent with the 2D circulation in the TEM system. An important result is that the residual-mean circulation is not zonally uniform in both the stratosphere and mesosphere. This is likely caused by longitudinally dependent wave sources and propagation characteristics. The contribution of planetary waves and gravity waves to these residual-mean flows is discussed.


2010 ◽  
Vol 54 (02) ◽  
pp. 79-94 ◽  
Author(s):  
Xinshu Zhang ◽  
Piotr Bandyk ◽  
Robert F. Beck

Large-amplitude, time-domain, wave-body interactions are studied in this paper for problems with forward speed. Both two-dimensional strip theory and three-dimensional computation methods are shown and compared by a number of numerical simulations. In the present approach, an exact body boundary condition and linearized free surface boundary conditions are used. By distributing desingularized sources above the calm water surface and using constant-strength flat panels on the exact body surface, the boundary integral equations are solved numerically at each time step. The strip theory method implements Radial Basis Functions to approximate the longitudinal derivatives of the velocity potential on the body. Once the fluid velocities on the free surface are computed, the free surface elevation and potential are updated by integrating the free surface boundary conditions. After each time step, the body surface and free surface are regrided due to the instantaneous changing wetted body geometry. Extensive results are presented to validate the efficiency of the present methods. These results include the added mass and damping computations for a Wigley III hull and an S-175 hull with forward speed using both two-dimensional and three-dimensional approaches. Exciting forces acting on a Wigley III hull due to regular head seas are obtained and compared using both the fully three-dimensional method and the two-dimensional strip theory. All the computational results are compared with experiments or other numerical solutions.


2020 ◽  
Author(s):  
Deborah Bardet ◽  
Aymeric Spiga ◽  
Sandrine Guerlet ◽  
Ehouarn Millour ◽  
François Lott

<p>To address questions about the driving mechanisms of Saturn's equatorial oscillation, our team at the Laboratoire de Météorologie Dynamique built the DYNAMICO-Saturn Global Climate Model to study tropospheric dynamics, tropospheric waves activity (Spiga et al. 2020) and equatorial stratospheric dynamics (Bardet et al. 2020) of Saturn. Previous studies (Guerlet et al. 2014, Spiga et al. 2020, Cabanes et al. 2020) have shown that our model produces consistent thermal structure and seasonal variability compared to Cassini CIRS measurements, mid-latitude eddy-driven tropospheric eastward and westward jets commensurate to those observed and following the zonostrophic regime, and planetary-scale waves such as Rossby-gravity (Yanai), Rossby and Kelvin waves in the tropical channel. Extending the model top toward the upper stratosphere allowed our model to produce an almost semi-annual equatorial oscillation with opposite eastward and westward phases. Associated temperature anomalies have a similar behavior than the Cassini/CIRS observations, but the amplitude of the temperature oscillation is twice smaller than the observed one. The absence of sub-grid-scale waves in the model produces an imbalance in eastward- and westward-wave forcing on the mean flow and could be an explanation to the irregularity in both the oscillating period and the downward rate propagation of the resolved Saturn equatorial oscillation.</p> <p>To explore the impact of those small-scale waves on the spontaneous equatorial oscillation emerging in the DYNAMICO-Saturn GCM (Bardet et al. 2020), we add a sub-grid-scale non-orographic gravity waves drag parameterization in our model.<br />This parameterization is directly adapted from the stochastic terrestrial model of Lott et al. (2012). This formalism represents a broadband gravity wave spectrum, using the superposition of a large statistical set of monochromatic waves. As the time scale of the life cycles of gravity waves is much longer than the time step of our GCM, our parametrization can launch a few waves whose characteristics are randomly chosen at each time step. This stochastic gravity waves drag parameterization is applied in DYNAMICO-Saturn on all points of the horizontal grid.</p> <p>A key parameter used in the non-orographic gravity waves drag parameterization is the maximum value of the Eliassen-Palm flux. The Eliassen Palm flux represents the momentum carried by waves that could be transferred to the mean flow. This value has never been measured in Saturn's atmosphere and it represents an important degree of freedom in the parameterization of gravity waves.</p> <p>We performed several test simulations, lasting two Saturn years whose initial state is derived from Bardet et al (2020), with an horizontal resolution of 1/2° in longitude/latitude and a vertical resolution ranging between 3 bar to 1 μbar. For these test simulations, the maximum value of the Eliassen-Palm fulx is set to 10<sup>-6</sup>, 10<sup>-5</sup>, 10<sup>-4</sup> and 10<sup>-3</sup> kg m<sup>-1</sup> s<sup>-2</sup>. </p> <p>Preliminary results show that the appropriate value of our main parameter is between 10<sup>-5</sup> and 10<sup>-4</sup> kg m<sup>-1</sup> s<sup>-2</sup>. Eliassen-Palm flux value of 10<sup>-3</sup> kg m<sup>-1</sup> s<sup>-2</sup> demonstrates a too large impact: the equatorial oscillation is entirely vanished is this configuration. The simulation using the value of 10<sup>-6</sup> kg m<sup>-1</sup> s<sup>-2</sup> is equivalent to the control simulation without the gravity waves drag parameterization.  </p> <p>The next step is to test other parameters, as phase velocity of the gravity waves, horizontal wavenumber, to understand how gravity waves impact the equatorial oscillation.</p>


2000 ◽  
Vol 407 ◽  
pp. 235-263 ◽  
Author(s):  
OLIVER BÜHLER

Theoretical and numerical results are presented on the transport of vorticity (or potential vorticity) due to dissipating gravity waves in a shallow-water system with background rotation and bottom topography. The results are obtained under the assumption that the flow can be decomposed into small-scale gravity waves and a large-scale mean flow. The particle-following formalism of ‘generalized Lagrangian-mean’ theory is then used to derive an ‘effective mean force’ that captures the vorticity transport due to the dissipating waves. This can be achieved without neglecting other, non-dissipative, effects which is an important practical consideration. It is then shown that the effective mean force obeys the so-called ‘pseudomomentum rule’, i.e. the force is approximately equal to minus the local dissipation rate of the wave's pseudomomentum. However, it is also shown that this holds only if the underlying dissipation mechanism is momentum-conserving. This requirement has important implications for numerical simulations, and these are discussed.The novelty of the results presented here is that they have been derived within a uniform theoretical framework, that they are not restricted to small wave amplitude, ray-tracing or JWKB-type approximations, and that they also include wave dissipation by breaking, or shock formation. The theory is tested carefully against shock-capturing nonlinear numerical simulations, which includes the detailed study of a wavetrain subject to slowly varying bottom topography. The theory is also cross-checked in the appropriate asymptotic limit against recently formulated weakly nonlinear theories. In addition to the general finite-amplitude theory, detailed small-amplitude expressions for the main results are provided in which the explicit appearance of Lagrangian fields can be avoided. The motivation for this work stems partly from an on-going study of high-altitude breaking of internal gravity waves in the atmosphere, and some preliminary remarks on atmospheric applications and on three-dimensional stratified versions of these results are given.


2018 ◽  
Vol 48 (8) ◽  
pp. 1691-1708 ◽  
Author(s):  
Yasushi Fujiwara ◽  
Yutaka Yoshikawa ◽  
Yoshimasa Matsumura

AbstractThe present study performs a wave-resolving simulation of wind-driven currents under monochromatic surface gravity waves using the latest nonhydrostatic free-surface numerical model. Here, phase speed of the waves is set much greater than the current speed. Roll structures very similar to observed Langmuir circulations (LCs) appear in the simulation only when both waves and down-wave surface currents are present, demonstrating that the rolls are driven by the wave–current interaction. A vorticity analysis of simulated mean flow reveals that the rolls are driven by the torque associated with wave motion, which arises from a correlation between wave-induced vorticity fluctuation and the wave motion itself. Furthermore, it is confirmed that the wave-induced torque is very well represented by the curl of the vortex force (VF), that is, the vector product of mean vorticity and Stokes drift velocity. Therefore, it is concluded that the simulated rolls are LCs and that the wave effects are well represented by the VF expression in the present simulation. The present study further revisits the scaling assumptions made by previous studies that derived VF formulation and shows that there is disagreement among the previous studies regarding the applicability of VF formulation when the wave orbital velocity (proportional to the amplitude times the frequency) is much smaller than the mean flow velocity. The result from the present simulation shows that the VF expression is still valid even with such small wave amplitudes, as long as phase speed of the waves is much greater than the current speed.


Author(s):  
Dakui Feng ◽  
Xianzhou Wang ◽  
Zhiguo Zhang ◽  
Yanming Guan

The catamaran is composed of two monohulls, the flow fields between the inner and outer side of each monohull are different, the bodies must be considered as lifting bodies. So it is very important to know the lifting effect on hydrodynamic characteristics of catamaran hull at the preliminary design stage of its hull form. The pressure Kutta condition is imposed on the trailing-surface of the lifting body by determining the dipole distribution, which generates required circulation on the lifting part. The method is based on Green’s second theorem. Rankine Sources and dipoles are placed on boundary surfaces. Time-stepping scheme is adopted to simulate the wave generated by the catamaran with a uniform speed in deep water. The values of the potential and position of the free surface are updated by integrating the nonlinear Lagrangian free surface boundary conditions for every time. A moving computational window is used in the computations by truncating the fluid domain (the free surface) into a computational domain. The grid regeneration scheme is developed to determine the approximate position of the free surface for the next time step. An implicit implement of far field condition is enforced automatically at the truncation boundary of the computational window, Radiation condition is satisfied automatically. The influences on the wave making resistance of the distance between the twin hulls of the Wigley catamaran on the hydrodynamic characteristics are discussed. The numerical results are presented compared with the existing simulation result. The method can be used to simulate the flow fields around the foil near free surface.


Sign in / Sign up

Export Citation Format

Share Document