scholarly journals The creeping motion of liquid drops through a circular tube of comparable diameter

1975 ◽  
Vol 71 (2) ◽  
pp. 361-383 ◽  
Author(s):  
B. P. Ho ◽  
L. G. Leal

The creeping motion through a circular tube of neutrally buoyant Newtonian drops which have an undeformed radius comparable to that of the tube was studied experimentally. Both a Newtonian and a viscoelastic suspending fluid were used in order to determine the influence of viscoelasticity. The extra pressure drop owing to the presence of the suspended drops, the shape and velocity of the drops, and the streamlines of the flow are reported for various viscosity ratios, total flow rates and drop sizes.

1973 ◽  
Vol 60 (1) ◽  
pp. 81-96 ◽  
Author(s):  
Peter M. Bungay ◽  
Howard Brenner

An expression is derived for the (low Reynolds number) additional pressure drop created by a relatively small sphere moving near the wall of a circular tube through which there is a Poiseuille flow. Two specific applications are examined: (i) the sedimentation of a homogeneous non-neutrally buoyant sphere in a quiescent fluid; and (ii) the motion of a neutrally buoyant sphere. In the latter case a pronounced increase in the additional pressure drop is predicted when the separation between the sphere and the tube wall is reduced to zero.This analysis, which includes the behaviour for a sphere in contact with the tube wall, supplements previous ‘method of reflexions’ treatments valid only when the distance from the sphere centre to the wall is large compared with the sphere radius.


1985 ◽  
Vol 50 (3) ◽  
pp. 745-757 ◽  
Author(s):  
Andreas Zahn ◽  
Lothar Ebner ◽  
Kurt Winkler ◽  
Jan Kratochvíl ◽  
Jindřich Zahradník

The effect of two-phase flow regime on decisive hydrodynamic and mass transfer characteristics of horizontal-tube gas-liquid reactors (pressure drop, liquid holdup, kLaL) was determined in a cocurrent-flow experimental unit of the length 4.15 m and diameter 0.05 m with air-water system. An adjustable-height weir was installed in the separation chamber at the reactor outlet to simulate the effect of internal baffles on reactor hydrodynamics. Flow regime maps were developed in the whole range of experimental gas and liquid flow rates both for the weirless arrangement and for the weir height 0.05 m, the former being in good agreement with flow-pattern boundaries presented by Mandhane. In the whole range of experi-mental conditions pressure drop data could be well correlated as a function of gas and liquid flow rates by an empirical exponential-type relation with specific sets of coefficients obtained for individual flow regimes from experimental data. Good agreement was observed between values of pressure drop obtained for weirless arrangement and data calculated from the Lockhart-Martinelli correlation while the contribution of weir to the overall pressure drop was well described by a relation proposed for the pressure loss in closed-end tubes. In the region of negligible weir influence values of liquid holdup were again succesfully correlated by the Lockhart-Martinelli relation while the dependence of liquid holdup data on gas and liquid flow rates obtained under conditions of significant weir effect (i.e. at low flow rates of both phases) could be well described by an empirical exponential-type relation. Results of preliminary kLaL measurements confirmed the decisive effect of the rate of energy dissipation on the intensity of interfacial mass transfer in gas-liquid dispersions.


1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


2016 ◽  
Vol 20 (suppl. 2) ◽  
pp. 463-470
Author(s):  
Djordjije Doder ◽  
Biljana Miljkovic ◽  
Borivoj Stepanov ◽  
Ivan Pesenjanski

The paper presents the results of an experimental investigation of air pressure drop while flowing through wheat straw beds. According to Darcy?s law, the smaller the porosity of the bed is, the bigger the pressure drop will be. The investigation was conducted using three different porosities (or three bed densities), and for two different air flow rates. After determining porosity (which is directly measurable), the permeability of straw could be found. For high flow velocities, such as the velocity of air flowing through a straw bale, the Forchheimer equation becomes more relevant as a correction of Darcy?s law with inertial effects included. Otherwise, the permeability tensor depends only on the geometry of the porous medium. With permeability known, the Forchheimer equation coefficients can be easily estimated. These results may be important for the future development of efficient biomass combustion facilities. The measurement methods and facility characteristics are described in more detail.


Author(s):  
Ashish Kotwal ◽  
Che-Hao Yang ◽  
Clement Tang

The current study shows computational and experimental analysis of multiphase flows (gas-liquid two-phase flow) in channels with sudden area change. Four test sections used for sudden contraction and expansion of area in experiments and computational analysis. These are 0.5–0.375, 0.5–0.315, 0.5–0.19, 0.5–0.14, inversely true for expansion channels. Liquid Flow rates ranging from 0.005 kg/s to 0.03 kg/s employed, while gas flow rates ranging from 0.00049 kg/s to 0.029 kg/s implemented. First, single-phase flow consists of only water, and second two-phase Nitrogen-Water mixture flow analyzed experimentally and computationally. For Single-phase flow, two mathematical models used for comparison: the two transport equations k-epsilon turbulence model (K-Epsilon), and the five transport equations Reynolds stress turbulence interaction model (RSM). A Eulerian-Eulerian multiphase approach and the RSM mathematical model developed for two-phase gas-liquid flows based on current experimental data. As area changes, the pressure drop observed, which is directly proportional to the Reynolds number. The computational analysis can show precise prediction and a good agreement with experimental data when area ratio and pressure differences are smaller for laminar and turbulent flows in circular geometries. During two-phase flows, the pressure drop generated shows reasonable dependence on void fraction parameter, regardless of numerical analysis and experimental analysis.


Sign in / Sign up

Export Citation Format

Share Document