Stability of the flow of a fluid through a flexible tube at intermediate Reynolds number

1998 ◽  
Vol 357 ◽  
pp. 123-140 ◽  
Author(s):  
V. KUMARAN

The stability of the flow of a fluid in a flexible tube is analysed over a range of Reynolds numbers 1<Re<104 using a linear stability analysis. The system consists of a Hagen–Poiseuille flow of a Newtonian fluid of density ρ, viscosity η and maximum velocity V through a tube of radius R which is surrounded by an incompressible viscoelastic solid of density ρ, shear modulus G and viscosity ηs in the region R<r<HR. In the intermediate Reynolds number regime, the stability depends on the Reynolds number Re=ρVR/η, a dimensionless parameter [sum ]=ρGR2/η2, the ratio of viscosities ηr= ηs/η, the ratio of radii H and the wavenumber of the perturbations k. The neutral stability curves are obtained by numerical continuation using the analytical solutions obtained in the zero Reynolds number limit as the starting guess. For ηr=0, the flow becomes unstable when the Reynolds number exceeds a critical value Rec, and the critical Reynolds number increases with an increase in [sum ]. In the limit of high Reynolds number, it is found that Rec∝[sum ]α, where α varies between 0.7 and 0.75 for H between 1.1 and 10.0. An analysis of the flow structure indicates that the viscous stresses are confined to a boundary layer of thickness Re−1/3 for Re[Gt ]1, and the shear stress, scaled by ηV/R, increases as Re1/3. However, no simple scaling law is observed for the normal stress even at 103<Re<105, and consequently the critical Reynolds number also does not follow a simple scaling relation. The effect of variation of ηr on the stability is analysed, and it is found that a variation in ηr could qualitatively alter the stability characteristics. At relatively low values of [sum ] (about 102), the system could become unstable at all values of ηr, but at relatively high values of [sum ] (greater than about 104), an instability is observed only when the viscosity ratio is below a maximum value η*rm.

1999 ◽  
Vol 395 ◽  
pp. 211-236 ◽  
Author(s):  
V. SHANKAR ◽  
V. KUMARAN

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such ‘non-parabolic’ flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.


1984 ◽  
Vol 148 ◽  
pp. 193-205 ◽  
Author(s):  
T. R. Akylas ◽  
J.-P. Demurger

A theoretical study is made of the stability of pipe flow with superimposed rigid rotation to finite-amplitude disturbances at high Reynolds number. The non-axisymmetric mode that requires the least amount of rotation for linear instability is considered. An amplitude expansion is developed close to the corresponding neutral stability curve; the appropriate Landau constant is calculated. It is demonstrated that the flow exhibits nonlinear subcritical instability, the nonlinear effects being particularly strong owing to the large magnitude of the Landau constant. These findings support the view that a small amount of extraneous rotation could play a significant role in the transition to turbulence of pipe flow.


1981 ◽  
Vol 108 ◽  
pp. 101-125 ◽  
Author(s):  
Fredrick W. Cotton ◽  
Harold Salwen

Linear stability of rotating Hagen-Poiseuille flow has been investigated by an orthonormal expansion technique, confirming results by Pedley and Mackrodt and extending those results to higher values of the wavenumber |α|, the Reynolds number R, and the azimuthal index n. For |α| [gsim ] 2, the unstable region is pushed to considerably higher values of R and the angular velocity, Ω. In this region, the neutral stability curves obey a simple scaling, consistent with the unstable modes being centre modes. For n = 1, individual neutral stability curves have been calculated for several of the low-lying eigenmodes, revealing a complicated coupling between modes which manifests itself in kinks, cusps and loops in the neutral stability curves; points of degeneracy in the R, Ω plane; and branching behaviour on curves which circle a point of degeneracy.


Author(s):  
Sharath Jose ◽  
Rama Govindarajan

Small variations introduced in shear flows are known to affect stability dramatically. Rotation of the flow system is one example, where the critical Reynolds number for exponential instabilities falls steeply with a small increase in rotation rate. We ask whether there is a fundamental reason for this sensitivity to rotation. We answer in the affirmative, showing that it is the non-normality of the stability operator in the absence of rotation which triggers this sensitivity. We treat the flow in the presence of rotation as a perturbation on the non-rotating case, and show that the rotating case is a special element of the pseudospectrum of the non-rotating case. Thus, while the non-rotating flow is always modally stable to streamwise-independent perturbations, rotating flows with the smallest rotation are unstable at zero streamwise wavenumber, with the spanwise wavenumbers close to that of disturbances with the highest transient growth in the non-rotating case. The instability critical rotation number scales inversely as the square of the Reynolds number, which we demonstrate is the same as the scaling obeyed by the minimum perturbation amplitude in non-rotating shear flow needed for the pseudospectrum to cross the neutral line. Plane Poiseuille flow and plane Couette flow are shown to behave similarly in this context.


Author(s):  
Lam Nguyen ◽  
John Elsnab ◽  
Tim Ameel

Xurography is an inexpensive rapid prototyping technology for the development of microfluidic systems. Imprecision in the xurographic tape cutting process can result in undesired changes in channel dimensions near features that require a change in cutting direction, such as 90° miter bends. An experimental study of water flow in rectangular xurographic microchannels incorporating 90° miter bends with different channel widths in each leg is reported. A set of twelve microchannels, with channel depth approximately 105 micrometers and aspect ratio ranging from 0.071 to 0.435, were fabricated from double-sided adhesive Kapton® polyimide tape and two rectangular glass plates. The channels were reinforced with a mechanical clamping system, enabling high Reynolds number, Re, flows (up to Re = 3200) where Re was based upon hydraulic diameter and average velocity. Reported data include friction factor and critical Reynolds number for straight microchannels and loss coefficients for flow through 90° miter bends that contain either a contraction or expansion with cross-sectional area ratios of 0.5, 0.333 and 0.2. The critical Reynolds number, Recr, ranged from 1750 to 2300 and was found to be dependent on channel defects such as sidewall roughness, adhesive droplets, and corner imperfections. Loss coefficients through 90° miter bends with expansion decrease rapidly for Re < Recr. At the transition, the loss coefficient suddenly drops and approaches an asymptotic value for Re > Recr. For 90° miter bends with contractions, loss coefficients gradually decrease with increasing Re for 150 < Re < 1400. In addition, the loss coefficient decreases with decreasing area ratio through the contraction or expansion. The minor loss coefficient data were found to be dependent on Reynolds numbers and area ratio of contraction/expansion at the bend. The results suggest that the effect of the contraction/expansion was the dominant mechanism for minor losses in the 90° miter bend.


2017 ◽  
Vol 822 ◽  
pp. 813-847 ◽  
Author(s):  
Azan M. Sapardi ◽  
Wisam K. Hussam ◽  
Alban Pothérat ◽  
Gregory J. Sheard

This study seeks to characterise the breakdown of the steady two-dimensional solution in the flow around a 180-degree sharp bend to infinitesimal three-dimensional disturbances using a linear stability analysis. The stability analysis predicts that three-dimensional transition is via a synchronous instability of the steady flows. A highly accurate global linear stability analysis of the flow was conducted with Reynolds number $\mathit{Re}<1150$ and bend opening ratio (ratio of bend width to inlet height) $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 5$. This range of $\mathit{Re}$ and $\unicode[STIX]{x1D6FD}$ captures both steady-state two-dimensional flow solutions and the inception of unsteady two-dimensional flow. For $0.2\leqslant \unicode[STIX]{x1D6FD}\leqslant 1$, the two-dimensional base flow transitions from steady to unsteady at higher Reynolds number as $\unicode[STIX]{x1D6FD}$ increases. The stability analysis shows that at the onset of instability, the base flow becomes three-dimensionally unstable in two different modes, namely a spanwise oscillating mode for $\unicode[STIX]{x1D6FD}=0.2$ and a spanwise synchronous mode for $\unicode[STIX]{x1D6FD}\geqslant 0.3$. The critical Reynolds number and the spanwise wavelength of perturbations increase as $\unicode[STIX]{x1D6FD}$ increases. For $1<\unicode[STIX]{x1D6FD}\leqslant 2$ both the critical Reynolds number for onset of unsteadiness and the spanwise wavelength decrease as $\unicode[STIX]{x1D6FD}$ increases. Finally, for $2<\unicode[STIX]{x1D6FD}\leqslant 5$, the critical Reynolds number and spanwise wavelength remain almost constant. The linear stability analysis also shows that the base flow becomes unstable to different three-dimensional modes depending on the opening ratio. The modes are found to be localised near the reattachment point of the first recirculation bubble.


1972 ◽  
Vol 52 (3) ◽  
pp. 401-423 ◽  
Author(s):  
Timothy W. Kao ◽  
Cheol Park

The stability of the laminar co-current flow of two fluids, oil and water, in a rectangular channel was investigated experimentally, with and without artificial excitation. For the ratio of viscosity explored, only the disturbances in water grew in the beginning stages of transition to turbulence. The critical water Reynolds number, based upon the hydraulic diameter of the channel and the superficial velocity defined by the ratio of flow rate of water to total cross-sectional area of the channel, was found to be 2300. The behaviour of damped and growing shear waves in water was examined in detail using artificial excitation and briefly compared with that observed in Part 1. Mean flow profiles, the amplitude distribution of disturbances in water, the amplification rate, wave speed and wavenumbers were obtained. A neutral stability boundary in the wave-number, water Reynolds number plane was also obtained experimentally.It was found that in natural transition the interfacial mode was not excited. The first appearance of interfacial waves was actually a manifestation of the shear waves in water. The role of the interface in the transition range from laminar to turbulent flow in water was to introduce and enhance spanwise oscillation in the water phase and to hasten the process of breakdown for growing disturbances.


1981 ◽  
Vol 48 (1) ◽  
pp. 192-194 ◽  
Author(s):  
S. C. Gupta ◽  
V. K. Garg

It is found that even a 5 percent change in the velocity profile produces a 100 percent change in the critical Reynolds number for the stability of developing flow very close to the entrance of a two-dimensional channel.


1968 ◽  
Vol 90 (1) ◽  
pp. 109-114 ◽  
Author(s):  
Ahmed R. Wazzan ◽  
T. Okamura ◽  
A. M. O. Smith

The theory of two-dimensional instability of laminar flow of water over solid surfaces is extended to include the effects of heat transfer. The equation that governs the stability of these flows to Tollmien-Schlichting disturbances is the Orr-Sommerfeld equation “modified” to include the effect of viscosity variation with temperature. Numerical solutions to this equation at high Reynolds numbers are obtained using a new method of integration. The method makes use of the Gram-Schmidt orthogonalization technique to obtain linearly independent solutions upon numerically integrating the “modified Orr-Sommerfeld” equation using single precision arithmetic. The method leads to satisfactory answers for Reynolds numbers as high as Rδ* = 100,000. The analysis is applied to the case of flow over both heated and cooled flat plates. The results indicate that heating and cooling of the wall have a large influence on the stability of boundary-layer flow in water. At a free-stream temperature of 60 deg F and wall temperatures of 60, 90, 120, 135, 150, 200, and 300deg F, the critical Reynolds numbers Rδ* are 520, 7200, 15200, 15600, 14800, 10250, and 4600, respectively. At a free-stream temperature of 200F and wall temperature of 60 deg F (cooled case), the critical Reynolds number is 151. Therefore, it is evident that a heated wall has a stabilizing effect, whereas a cooled wall has a destabilizing effect. These stability calculations show that heating increases the critical Reynolds number to a maximum value (Rδ* max = 15,700 at a temperature of TW = 130 deg F) but that further heating decreases the critical Reynolds number. In order to determine the influence of the viscosity derivatives upon the results, the critical Reynolds number for the heated case of T∞ = 40 and TW = 130 deg F was determined using (a) the Orr-Sommerfeld equation and (b) the present governing equation. The resulting critical Reynolds numbers are Rδ* = 140,000 and 16,200, respectively. Therefore, it is concluded that the terms pertaining to the first and second derivatives of the viscosity have a considerable destabilizing influence.


Sign in / Sign up

Export Citation Format

Share Document