Instability of rotating convection

2000 ◽  
Vol 403 ◽  
pp. 153-172 ◽  
Author(s):  
S. M. COX ◽  
P. C. MATTHEWS

Convection rolls in a rotating layer can become unstable to the Küppers–Lortz instability. When the horizontal boundaries are stress free and the Prandtl number is finite, this instability diverges in the limit where the perturbation rolls make a small angle with the original rolls. This divergence is resolved by taking full account of the resonant mode interactions that occur in this limit: it is necessary to include two roll modes and a large-scale mean flow in the perturbation. It is found that rolls of critical wavelength whose amplitude is of order ε are always unstable to rolls oriented at an angle of order ε2/5. However, these rolls are unstable to perturbations at an infinitesimal angle if the Taylor number is greater than 4π4. Unlike the Küppers–Lortz instability, this new instability at infinitesimal angles does not depend on the direction of rotation; it is driven by the flow along the axes of the rolls. It is this instability that dominates in the limit of rapid rotation. Numerical simulations confirm the analytical results and indicate that the instability is subcritical, leading to an attracting heteroclinic cycle. We show that the small-angle instability grows more rapidly than the skew-varicose instability.

Author(s):  
Carlo Cossu ◽  
Yongyun Hwang

We collect and discuss the results of our recent studies which show evidence of the existence of a whole family of self-sustaining motions in wall-bounded turbulent shear flows with scales ranging from those of buffer-layer streaks to those of large-scale and very-large-scale motions in the outer layer. The statistical and dynamical features of this family of self-sustaining motions, which are associated with streaks and quasi-streamwise vortices, are consistent with those of Townsend’s attached eddies. Motions at each relevant scale are able to sustain themselves in the absence of forcing from larger- or smaller-scale motions by extracting energy from the mean flow via a coherent lift-up effect. The coherent self-sustaining process is embedded in a set of invariant solutions of the filtered Navier–Stokes equations which take into full account the Reynolds stresses associated with the residual smaller-scale motions. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


Author(s):  
Yanfei Gao ◽  
Yangwei Liu ◽  
Luyang Zhong ◽  
Jiexuan Hou ◽  
Lipeng Lu

AbstractThe standard k-ε model (SKE) and the Reynolds stress model (RSM) are employed to predict the tip leakage flow (TLF) in a low-speed large-scale axial compressor rotor. Then, a new research method is adopted to “freeze” the turbulent kinetic energy and dissipation rate of the flow field derived from the RSM, and obtain the turbulent viscosity using the Boussinesq hypothesis. The Reynolds stresses and mean flow field computed on the basis of the frozen viscosity are compared with the results of the SKE and the RSM. The flow field in the tip region based on the frozen viscosity is more similar to the results of the RSM than those of the SKE, although certain differences can be observed. This finding indicates that the non-equilibrium turbulence transport nature plays an important role in predicting the TLF, as well as the turbulence anisotropy.


1984 ◽  
Vol 141 ◽  
pp. 109-122 ◽  
Author(s):  
H. M. Atassi

It is shown that for a thin airfoil with small camber and small angle of attack moving in a periodic gust pattern, the unsteady lift caused by the gust can be constructed by linear superposition to the Sears lift of three independent components accounting separately for the effects of airfoil thickness, airfoil camber and non-zero angle of attack to the mean flow. This is true in spite of the nonlinear dependence of the unsteady flow on the mean potential flow of the airfoil. Specific lift formulas are derived and analysed to assess the importance of mean flow angle of attack and airfoil camber on the gust response.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


1993 ◽  
Vol 251 ◽  
pp. 21-53 ◽  
Author(s):  
Sergei I. Badulin ◽  
Victor I. Shrira

The propagation of guided internal waves on non-uniform large-scale flows of arbitrary geometry is studied within the framework of linear inviscid theory in the WKB-approximation. Our study is based on a set of Hamiltonian ray equations, with the Hamiltonian being determined from the Taylor-Goldstein boundary-value problem for a stratified shear flow. Attention is focused on the fundamental fact that the generic smooth non-uniformities of the large-scale flow result in specific singularities of the Hamiltonian. Interpreting wave packets as particles with momenta equal to their wave vectors moving in a certain force field, one can consider these singularities as infinitely deep potential holes acting quite similarly to the ‘black holes’ of astrophysics. It is shown that the particles fall for infinitely long time, each into its own ‘black hole‘. In terms of a particular wave packet this falling implies infinite growth with time of the wavenumber and the amplitude, as well as wave motion focusing at a certain depth. For internal-wave-field dynamics this provides a robust mechanism of a very specific conservative and moreover Hamiltonian irreversibility.This phenomenon was previously studied for the simplest model of the flow non-uniformity, parallel shear flow (Badulin, Shrira & Tsimring 1985), where the term ‘trapping’ for it was introduced and the basic features were established. In the present paper we study the case of arbitrary flow geometry. Our main conclusion is that although the wave dynamics in the general case is incomparably more complicated, the phenomenon persists and retains its most fundamental features. Qualitatively new features appear as well, namely, the possibility of three-dimensional wave focusing and of ‘non-dispersive’ focusing. In terms of the particle analogy, the latter means that a certain group of particles fall into the same hole.These results indicate a robust tendency of the wave field towards an irreversible transformation into small spatial scales, due to the presence of large-scale flows and towards considerable wave energy concentration in narrow spatial zones.


Author(s):  
Susanne Horn ◽  
Peter J. Schmid ◽  
Jonathan M. Aurnou

Abstract The large-scale circulation (LSC) is the most fundamental turbulent coherent flow structure in Rayleigh-B\'enard convection. Further, LSCs provide the foundation upon which superstructures, the largest observable features in convective systems, are formed. In confined cylindrical geometries with diameter-to-height aspect ratios of Γ ≅ 1, LSC dynamics are known to be governed by a quasi-two-dimensional, coupled horizontal sloshing and torsional (ST) oscillatory mode. In contrast, in Γ ≥ √2 cylinders, a three-dimensional jump rope vortex (JRV) motion dominates the LSC dynamics. Here, we use dynamic mode decomposition (DMD) on direct numerical simulation data of liquid metal to show that both types of modes co-exist in Γ = 1 and Γ = 2 cylinders but with opposite dynamical importance. Furthermore, with this analysis, we demonstrate that ST oscillations originate from a tilted elliptical mean flow superposed with a symmetric higher order mode, which is connected to the four rolls in the plane perpendicular to the LSC in Γ = 1 tanks.


2021 ◽  
Author(s):  
Rohit Chhiber ◽  
Arcadi Usmanov ◽  
William Matthaeus ◽  
Melvyn Goldstein ◽  
Riddhi Bandyopadhyay

<div>Simulation results from a global <span>magnetohydrodynamic</span> model of the solar corona and the solar wind are compared with Parker Solar <span>Probe's</span> (<span>PSP</span>) observations during its first several orbits. The fully three-dimensional model (<span>Usmanov</span> <span>et</span> <span>al</span>., 2018, <span>ApJ</span>, 865, 25) is based on Reynolds-averaged mean-flow equations coupled with turbulence transport equations. The model accounts for effects of electron heat conduction, Coulomb collisions, Reynolds stresses, and heating of protons and electrons via nonlinear turbulent cascade. Turbulence transport equations for turbulence energy, cross <span>helicity</span>, and correlation length are solved concurrently with the mean-flow equations. We specify boundary conditions at the coronal base using solar synoptic <span>magnetograms</span> and calculate plasma, magnetic field, and turbulence parameters along the <span>PSP</span> trajectory. We also accumulate data from all orbits considered, to obtain the trends observed as a function of heliocentric distance. Comparison of simulation results with <span>PSP</span> data show general agreement. Finally, we generate synthetic fluctuations constrained by the local rms turbulence amplitude given by the model, and compare properties of this synthetic turbulence with PSP observations.</div>


2021 ◽  
Author(s):  
Gaston Latessa ◽  
Angela Busse ◽  
Manousos Valyrakis

<p>The prediction of particle motion in a fluid flow environment presents several challenges from the quantification of the forces exerted by the fluid onto the solids -normally with fluctuating behaviour due to turbulence- and the definition of the potential particle entrainment from these actions. An accurate description of these phenomena has many practical applications in local scour definition and to the design of protection measures.</p><p>In the present work, the actions of different flow conditions on sediment particles is investigated with the aim to translate these effects into particle entrainment identification through analytical solid dynamic equations.</p><p>Large Eddy Simulations (LES) are an increasingly practical tool that provide an accurate representation of both the mean flow field and the large-scale turbulent fluctuations. For the present case, the forces exerted by the flow are integrated over the surface of a stationary particle in the streamwise (drag) and vertical (lift) directions, together with the torques around the particle’s centre of mass. These forces are validated against experimental data under the same bed and flow conditions.</p><p>The forces are then compared against threshold values, obtained through theoretical equations of simple motions such as rolling without sliding. Thus, the frequency of entrainment is related to the different flow conditions in good agreement with results from experimental sediment entrainment research.</p><p>A thorough monitoring of the velocity flow field on several locations is carried out to determine the relationships between velocity time series at several locations around the particle and the forces acting on its surface. These results a relevant to determine ideal locations for flow investigation both in numerical and physical experiments.</p><p>Through numerical experiments, a large number of flow conditions were simulated obtaining a full set of actions over a fixed particle sitting on a smooth bed. These actions were translated into potential particle entrainment events and validated against experimental data. Future work will present the coupling of these LES models with Discrete Element Method (DEM) models to verify the entrainment phenomena entirely from a numerical perspective.</p>


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


Sign in / Sign up

Export Citation Format

Share Document