Non-specific alkaline phosphomonoesterases of eight species of digenetic trematodes

1975 ◽  
Vol 49 (4) ◽  
pp. 281-287 ◽  
Author(s):  
Wajih A. Nizami ◽  
Ather H. Siddiqi ◽  
A. N. K. Yusufi

ABSTRACTAlkaline phosphatases from different trematodes occupying the same habitat have identical pH optima but different levels of enzyme activities. Isoparorchis hypselobagri, from the fish Wallago attu, shows four to six times more enzyme activity than Fasciolopsis buski, Gastrodiscoides hominis and Echinostoma malayanum, from the pig Sus scrofa, and Fasciola gigantica, Gigantocotyle explanatum, Cotylophoron cotylophorum and Gastrothylax crumenifer, from the buffalo Bubalus bubalis.At least two peaks of activity at different levels of pH were obtained for each trematode examined. Both Gastrodiscoides hominis and Isoparorchis hypselobagri enzymes had three peaks of alkaline phosphatase activity.The optimum temperature for maximum enzyme activity was 40°C, above which rapid inactivation occurred. At temperatures below 40°C, the enzymes of fish and mammalian trematodes did not behave similarly; I. hypselobagri enzyme being active over a wider range of temperature (20°–40°C.Various concentrations of KCN and arsenate proportionately inhibited enzyme activity. NaF did not significantly influence enzyme activity, while Mg++ and CO++ acted as activators. The extent of inhibition or activation of enzyme activity of different trematodes varied, probably due to species differences. Both inhibition and activation of I. hypselobagri enzyme was higher than in the case of other trematodes.

1977 ◽  
Vol 51 (4) ◽  
pp. 373-378 ◽  
Author(s):  
S. Ashfaq Haider ◽  
Ather H. Siddiqi

ABSTRACTOxyhaemoglobins of six digenetic trematodes,—Srivastavaia indica, Gastrothylax crumenifer, Gigantocotyle explanatum, Fasciolopsis buski, Gastrodiscoides hominis, Isoparorchis hypselobagri, and of their 3 vertebrate hosts, Bubalus, bubalis, Sus scrofa, Wallago attu, were subjected to alkali denaturation at a pH of 12·4. All oxyhaemoglobins from trematodes and their hosts differ from each other in the rate and extent of alkali denaturation which may be explained due to variations in the amino acid sequences of a particular haem protein in addition to other factors.


1976 ◽  
Vol 50 (4) ◽  
pp. 259-265 ◽  
Author(s):  
S. Ashfaq Haider ◽  
Ather H. Siddiqi

ABSTRACTThe haemoglobins of six different species of trematodes: Gastrothylax crumenifer, Srivastavaia indica, Gigantocotyle explanatum, Fasciolopsis buski, Gastrodiscoides hominis Isoparorchis hypselobagri and their three different hosts: Bubalus bubalis, Sus scrofa, and Wallago attu were spectrophotometrically investigated, and were found to contain porphyrin IX as the common prosthetic group. Oxyhaemoglobin, carbonmonoxy-haemoglobin and reduced haemoglobin of all 6 species of trematodes and their 3 hosts under study gave similar absorption maxima. Distinct differences were, however, observed in the nature of the spectral curves of cyanmethaemoglobin which exhibit 2 absorption maxima in the β and the α region in the case of al trematodes whereas in the case of similar host haemoglobin derivatives only one single broad peak in the 536–540 nm region was obtained. With respect to pyridine derivatives all the trematode haemoglobins show a sharp peak in the α region and a minor hump in the β region except Gastrothylax crumenifer. All three host pyridine haemoglobin derivatives show only a single broad peak at 570 nm.


1982 ◽  
Vol 56 (2) ◽  
pp. 111-116 ◽  
Author(s):  
Masoodul Haque ◽  
Ather H. Siddiqi

ABSTRACTThe isoenzymes of acid and alkaline phosphatases and their histochemical localization were studied by polyacrylamide disc gel electrophoresis in four species of trematodes: Gigantocotyle explanatum from the liver and Gastrothylax crumenifer from the rumen of water buffalo (Bubalus bubalis) and Echinostoma malayanum and Fasciolopsis buski from the small intestine of the pig (Sus scrofa). Both acid and alkaline phosphatases were present in the tegument, gastrodermis, suckers, testes, ovary, eggs, vitellaria and uterus but alkaline phosphatase activity was demonstrated only in the parenchyma and excretory ducts. Polyacrylamide gel electrophoresis revealed two to four isoenzymes for both acid and alkaline phosphatase.


Parasitology ◽  
1973 ◽  
Vol 67 (2) ◽  
pp. 197-204 ◽  
Author(s):  
Madan M. Goil

Biochemical studies on the non-specific phosphomonoesterases have demonstrated the presence of acid phosphomonoesterase with maximum activity at pH 4·0 in Gastrodiscus aegyptiacus (enzyme I) and at pH 4·5 in the case of Fasdolopsis buski (enzyme II). The Km for ρ-nitrophenyl phosphate hydrolysis was 0·66 mM for enzyme I and 1·1 mM for enzyme II. Different concentrations of fluoride, arsenate, tartrate, tartaric acid, cysteine and copper brought about inhibition of both enzymes and magnesium, iodoaeetate, iodoacetamide and EDTA had no influence on either enzyme activity. Cobalt activated both enzymes while zinc inhibited enzyme I and strongly stimulated enzyme II.


1981 ◽  
Vol 55 (2) ◽  
pp. 115-122 ◽  
Author(s):  
A. J. Probert ◽  
R. K. Sharma ◽  
K. Singh ◽  
R. Saxena

ABSTRACTThe effect of oxyclozanide, hexachlorophene, nitroxynil, rafoxanide and diamphenethide on malate dehydrogenase activity of homogenates of Fasciola gigantica, Fasciolopsis buski and Paramphistomum explanatum was investigated. The ratio of oxaloacetate reduction to malate oxidation in homogenates of Fasciola gigantica, Fasciolopsis buski and P. explanatum was 4·5:1, 3·6:1 and 5·2:1 respectively. Oxyclozanide and rafoxanide at 10−3 M inhibited enzyme activity by 100% in homogenates from all three species while hexachlorophene at 10−3M also caused 100% inhibition in homogenates from Fasciola gigantica and P. explanatum but only 65% of malate oxidation in Fasciolopsis buski homogenates. Nitroxynil at 10−3M produced 60% inhibition in F. buski homogenates yet had little effect at this concentration on preparations from the other species. Little inhibition was seen with diamphenethide, even at high concentrations. Rapid death of Fasicola gigantica and P. explanatum resulted in vitro when 10−3M oxyclozanide, hexachlorophene, nitroxynil or rafoxanide, were added to the incubation medium. Fasciolopsis buski was killed by 10−3M oxyclozanide but at this concentration the remaining compounds only caused reduced activity. Assay of malate dehydrogenase following drug treatment in vitro failed to show any appreciable reduction in enzyme activity in Fasciola gigantica and P. explanatum but oxyclozanide and hexachlorophene produced inhibition in Fasciolopsis buski. The mode of action of these compounds is discussed.


2016 ◽  
Vol 60 (9) ◽  
pp. 1357-1366 ◽  
Author(s):  
Syma Ashraf Waiz ◽  
Mohammad Raies-ul-Haq ◽  
Suman Dhanda ◽  
Anil Kumar ◽  
T. Sridhar Goud ◽  
...  

1985 ◽  
Vol 248 (1) ◽  
pp. E1-E9 ◽  
Author(s):  
J. D. Robishaw ◽  
J. R. Neely

The metabolism of coenzyme A and control of its synthesis are reviewed. Pantothenate kinase is an important rate-controlling enzyme in the synthetic pathway of all tissues studied and appears to catalyze the flux-generating reaction of the pathway in cardiac muscle. This enzyme is strongly inhibited by coenzyme A and all of its acyl esters. The cytosolic concentrations of coenzyme A and acetyl coenzyme A in both liver and heart are high enough to totally inhibit pantothenate kinase under all conditions. Free carnitine, but not acetyl carnitine, deinhibits the coenzyme A-inhibited enzyme. Carnitine alone does not increase enzyme activity. Thus changes in the acetyl carnitine-to-carnitine ratio that occur with nutritional states provides a mechanism for regulation of coenzyme A synthetic rates. Changes in the rate of coenzyme A synthesis in liver and heart occurs with fasting, refeeding, and diabetes and in heart muscle with hypertrophy. The pathway and regulation of coenzyme A degradation are not understood.


Author(s):  
Olivera Babic ◽  
Jelica Simeunovic ◽  
Natasa Skrbic ◽  
Dajana Kovac ◽  
Zorica Svircev

Cyanobacteria, as highly adaptable microorganisms, are characterized by an ability to survive in different environmental conditions, in which a significant role belongs to their enzymes. Phosphatases are enzymes produced by algae in relatively large quantities in response to a low orthophosphate concentration and their activity is significantly correlated with their primary production. The activity of these enzymes was investigated in 11 cyanobacterial strains in order to determine enzyme synthesis depending on taxonomic and ecological group of cyanobacteria. The study was conducted with 4 terrestrial cyanobacterial strains, which belong to Nostoc and Anabaena genera, and 7 filamentous water cyanobacteria of Nostoc, Oscillatoria, Phormidium and Microcystis genera. The obtained results showed that the activity of acid and alkaline phosphatases strongly depended on cyanobacterial strain and the environment from which the strain originated. Higher activity of alkaline phosphatases, ranging from 3.64 to 85.14 ?molpNP/s/dm3, was recorded in terrestrial strains compared to the studied water strains (1.11-5.96 ?molpNP/s/dm3). The activity of acid phosphatases was higher in most tested water strains (1.67-6.28 ?molpNP/s/dm3) compared to the activity of alkaline phosphatases (1.11-5.96 ?molpNP/s/dm3). Comparing enzyme activity of nitrogen fixing and non-nitrogen fixing cyanobacteria, it was found that most nitrogen fixing strains had a higher activity of alkaline phosphatases. The data obtained in this work indicate that activity of phosphatases is a strain specific property. The results further suggest that synthesis and activity of phosphatases depended on eco-physiological characteristics of the examined cyanobacterial strains. This can be of great importance for the further study of enzymes and mechanisms of their activity as a part of cyanobacterial survival strategy in environments with extreme conditions.


1985 ◽  
Vol 59 (1) ◽  
pp. 1-18 ◽  
Author(s):  
T. S. Dunn ◽  
W. A. Nizami ◽  
R. E. B. Hanna

AbstractThe lymph system of three amphistome parasites from buffaloes, Gigantocotyle explanatum, Gastrothylax crumenifer and Srivastavaia indica was studied using light microscope histochemistry and electron microscopy. In each case the system comprised a single pair of main longitudinal vessels which gave rise to numerous sub-dividing lateral branches. Although the finer lymph channels associated with most internal systems, they did not penetrate the basement membrane of any organ. The lymph vessels were delimited by a unit membrane and separated from adjacent cells by interstitial material. The lymph fluid consisted of an amorphous proteinaceous, lipid-rich matrix, containing naked nuclei and granules of various sizes. Complexes of endoplasmic reticulum were frequently associated with the nuclei. No distinct Golgi bodies or mitochondria were evident. The granules noted throughout the lymph morphologically resembled autophagosomes and lysosomes. Autophagy within the lymph system presumably mobilizes amino acids for subsequent transport to tissues undergoing active protein synthesis. The lymph channels displayed an intimate relationship with the general parenchyma. In particular, numerous protrusions of lymph occurred into the cytoplasm of certain specialized parenchymal cells surrounding the pharynx. Within these ‘juxtapharyńigeal’ cells autophagic degradation of sequestered lymph cytoplasm apparently occurred. In the three species of amphistome studied, the lymph system appears to function in storage and mobilization of amino acids and possibly lipids. It may also serve to distribute other small molecules throughout the body. The detection of haemoglobin in the lymph system of G. crumenifer and S. indica, but not in Gigantocotyle explanatum, suggests a further role in oxygen storage and transport.


Andrologia ◽  
2016 ◽  
Vol 48 (9) ◽  
pp. 943-949 ◽  
Author(s):  
S. Iqbal ◽  
A. Riaz ◽  
S. M. H. Andrabi ◽  
Q. Shahzad ◽  
A. Z. Durrani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document