scholarly journals Pulsar wind nebulae created by fast-moving pulsars

2017 ◽  
Vol 83 (5) ◽  
Author(s):  
O. Kargaltsev ◽  
G. G. Pavlov ◽  
N. Klingler ◽  
B. Rangelov

We review multiwavelength properties of pulsar wind nebulae created by supersonically moving pulsars and the effects of pulsar motion on the pulsar wind nebulae morphologies and the ambient medium. Supersonic pulsar wind nebulae are characterized by bow-shaped shocks around the pulsar and/or cometary tails filled with the shocked pulsar wind. In the past several years significant advances in supersonic pulsar wind nebula studies have been made in deep observations with the Chandra and XMM-Newton X-ray observatories and the Hubble Space Telescope. In particular, these observations have revealed very diverse supersonic pulsar wind nebula morphologies in the pulsar vicinity, different spectral behaviours of long pulsar tails, the presence of puzzling outflows misaligned with the pulsar velocity and far-UV bow shocks. Here we review the current observational status focusing on recent developments and their implications.

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 4906
Author(s):  
Jurriën W. Collet ◽  
Thomas R. Roose ◽  
Bram Weijers ◽  
Bert U. W. Maes ◽  
Eelco Ruijter ◽  
...  

Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.


1985 ◽  
Vol 58 (2) ◽  
pp. 269-283 ◽  
Author(s):  
Gerald Scott

Abstract In spite of the remarkable advances that have been made in the engineering design of tires during the past two decades, the basic formulations used in vulcanization and protection during service have essentially remained unchanged. This is to a large extent due to two major factors: 1. The versatility of the traditional accelerated sulfur curing system which provides the necessary combination of resilience and strength with good resistance to cyclical stress. 2. The development of diarylamine antidegradants which confer a high level of thermal-oxidative and mechano-oxidative (fatigue) resistance to the rubber. Both of these developments have occurred slowly with small incremental improvements and, probably because of their success, relatively little fundamental work has been published which addresses the questions of why a polysulfide network is so resistant to fatigue and why N-sec-alkyl-N′-phenyl-p-phenylenediamines are so much more successful as antidegradants than other classes of antioxidant. It is becoming evident, however, that if tires are to withstand the increasingly demanding conditions to which they are subjected in service, much more attention must be paid to the material design as opposed to the structural design of tires. Nowhere is this more evident than in aircraft tires. Recent studies have shown that the tires of heavily laden wide-bodied aircraft reach temperatures in excess of 70°C at the relatively modest speed of 32 km/h (20 mph). Similarly, in heavy duty truck tires, temperatures over 100°C are not abnormal in the shoulder region. This leads to extensive restructurization of the fatigue resistant polysulfide network, particularly in the shoulder of the tire, to give a much weaker mono-disulfide structure. It is no coincidence then that failure normally occurs in this region. The practice of multiple retreading exacerbates the change in chemical decomposition of the rubber. It is well known to the rubber scientist that extending the vulcanization process also leads to restructurization of the rubber network from polysulfide to mono- and disulfide. This is shown typically for a HAF-black tire formulation at 140°C in Figure 1. Antidegradants have virtually no effect on anaerobic restructurization (see Figure 2), and indeed, the established antifatigue agent, IPPD (I), actually accelerates the loss of polysulfide crosslinks from the vulcanizate at 140°C. During fatiguing, on the other hand, IPPD effectively retards restructurization (see Figure 3), whereas a typical bisphenol, nonstaining antidegradant, II, has much less effect.


2020 ◽  
Vol 499 (2) ◽  
pp. 2051-2062 ◽  
Author(s):  
R Bandiera ◽  
N Bucciantini ◽  
J Martín ◽  
B Olmi ◽  
D F Torres

ABSTRACT The standard approach to the long-term evolution of pulsar wind nebulae (PWNe) is based on one-zone models treating the nebula as a uniform system. In particular for the late phase of evolved systems, many of the generally used prescriptions are based on educated guesses for which a proper assessment lacks. Using an advanced radiative code, we evaluate the systematic impact of various parameters, like the properties of the supernova ejecta, of the inner pulsar, as well of the ambient medium, upon the extent of the reverberation phase of PWNe. We investigate how different prescriptions shift the starting time of the reverberation phase, how this affects the amount of the compression, and how much of this can be ascribable to the radiation processes. Some critical aspects are the description of the reverse shock evolution, the efficiency by which at later times material from the ejecta accretes on to the swept-up shell around the PWN, and finally the density, velocity, and pressure profiles in the surrounding supernova remnant. We have explicitly treated the cases of the Crab Nebula, and of J1834.9−0846, taken to be representatives of the more and the less energetic pulsars, respectively. Especially for the latter object, the prediction of large compression factors is confirmed, even larger in the presence of radiative losses, also confirming our former prediction of periods of superefficiency during the reverberation phase of some PWNe.


1990 ◽  
Vol 8 (1-2) ◽  
pp. 51-71 ◽  
Author(s):  
J. C. V. Hansom ◽  
P. A. Rosen ◽  
T. J. Goldack ◽  
K. Oades ◽  
P. Fieldhouse ◽  
...  

This paper reviews recent developments and achievements in the program of planar foil instability experiments being performed at the AWE HELEN laser. Point projection Xray backlighting, with spectroscopy, is used to measure hydrodynamic mix in radiatively accelerated ablator/foil packages; the mix is identified in the experimental radiograph from the overlap of distinguishable spectral absorption features associated with each of the constituent materials.The first part of the paper describes the backlighting technique, and briefly summarizes progress made in the past two years, leading to the first results being obtained on a “high mix” Parylene-C ablator/molybdenum payload package. The second part considers the full analysis of one such ‘high mix’ shot (Shot 7772), describing how the spatial distribution of mix has been quantified and considering the various sources of error. Comparisons are made with both one-dimensional and two-dimensional hydrocode simulations. Finally, various improvements and extensions to the experiment and codes are indicated.


2017 ◽  
Vol 207 (1-4) ◽  
pp. 235-290 ◽  
Author(s):  
A. M. Bykov ◽  
E. Amato ◽  
A. E. Petrov ◽  
A. M. Krassilchtchikov ◽  
K. P. Levenfish

Author(s):  
Joel Feenstra ◽  
Jonathan Granstrom ◽  
Henry A. Sodano

Over the past few decades the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful, however, the gains that have been made in the device performance has resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnate growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the user’s gait or endurance are avoided. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the strap buckle with a mechanically amplified piezoelectric stack actuator. Piezoelectric stack actuators have found little use in energy harvesting applications due to their high stiffness which makes straining the material difficult. This issue will be alleviated using a mechanically amplified stack which allows the relatively low forces generated by the pack to be transformed to high forces on the piezoelectric stack. This paper will develop a theoretical model of the piezoelectric buckle and perform experimental testing to validate the model accuracy and energy harvesting performance.


Author(s):  
R Bandiera ◽  
N Bucciantini ◽  
J Martín ◽  
B Olmi ◽  
D F Torres

Abstract Understanding the evolution of a supernova remnant shell in time is fundamental. Such understanding is critical to build reliable models of the dynamics of the supernova remnant shell interaction with any pulsar wind nebula it might contain. Here, we perform a large study of the parameter space for the one-dimensional spherically symmetric evolution of a supernova remnant, accompanying it by analytical analysis. Assuming, as is usual, an ejecta density profile with a power-law core and an envelope, and a uniform ambient medium, we provide a set of highly-accurate approximations for the evolution of the main structural features of supernova remnants, such as the reverse and forward shocks and the contact discontinuity. We compare our results with previously adopted approximations, showing that existing simplified prescriptions can easily lead to large errors. In particular, in the context of pulsar wind nebulae modelling, an accurate description for the supernova remnant reverse shock is required. We also study in depth the self-similar solutions for the initial phase of evolution, when the reverse shock propagates through the envelope of the ejecta. Since these self-similar solutions are exact, but not fully analytical, we here provide highly-accurate approximations as well.


Author(s):  
ELENA AMATO

I will review the current status of our theoretical understanding of Pulsar Winds and associated nebulae (PWNe). In recent years, axisymmetric models of pulsar winds with a latitude dependent energy flux have proved very successful at explaining the morphology of PWNe as seen in the X-rays. This success has prompted developments aimed at using multi-wavelength observations of these nebulae as a diagnostics of the hidden physics of the pulsar wind and of the mechanism(s) through which particles are accelerated in these sources. I will discuss these most recent developments in terms of the information that we infer from detailed comparison of simulated non-thermal emission with current observations.


2012 ◽  
Vol 8 (S291) ◽  
pp. 251-256 ◽  
Author(s):  
Samar Safi-Harb

AbstractThe 1968 discovery of the Crab and Vela pulsars in their respective supernova remnants (SNRs) confirmed Baade and Zwicky's 1934 prediction that supernovae form neutron stars. Observations of Pulsar Wind Nebulae (PWNe), particularly with the Chandra X-ray Observatory, have in the past decade opened a new window to focus on the neutron stars' relativistic winds, study their interaction with their hosting SNRs, and find previously missed pulsars. While the Crab has been thought for decades to represent the prototype of PWNe, we now know of different classes of neutron stars and PWNe whose properties differ from the Crab. In this talk, I review the current status of neutron stars/PWNe-SNRs associations, and highlight the growing diversity of PWNe with an X-ray eye on their association with highly magnetized neutron stars. I conclude with an outlook to future high-energy studies.


Sign in / Sign up

Export Citation Format

Share Document