Biology of the cocktail shrimp, Trachysalambria curvirostris (Decapoda: Penaeidae) in the Yellow Sea of Korea

Author(s):  
H.K. Cha ◽  
C.W. Oh ◽  
J.H. Choi

Trachysalambria curvirostris occurs widely along the south and west coasts of Korea with a range extending from Kanghwado in the north-west, down to Sarangdo in the south-east. With seasonal warming of the waters starting in April, the shrimps begin to migrate from deep waters to the coastal area. Zoea and mysis larvae occurred from June to August. Sex ratio showed seasonal variations, with a mean value of 56·7% for the females. The species produces one cohort a year, with the ovaries ripening from June to July. Insemination appeared to take place from June to August, as more than half of the females sampled in the study over 15–16 mm carapace length were inseminated. Mean gonadosomatic index (GSI) reached a maximum between June and July. The smallest mature female found was 15 mm carapace length (CL). Size at 50% sexual maturity (CL50), determined from both mature females and inseminated females, was 15·37 mm and 16·49 mm CL, respectively. Fecundity was directly proportional to the size of the female, with clutch sizes varying from 16,380 eggs in the smallest female to 114,621 eggs in the largest, and the eggs ranged from 230 μm to 340 μm in diameter. The life span of females appeared to be 14–15 months according to size frequency distributions, while that of the male was 13–14 months. Population growth was estimated by the modified von Bertalanffy growth function incorporating seasonal variation in growth. Based on the growth parameters (K=2·00 y−1 and L∞=24·64 mm CL for females, and K=2·00 y−1 and L∞=19·00 mm CL for males) growth curves showed that females grew faster and reached a larger size at age than males. This result is supported by differences in growth performance indices (ϕ′).

Author(s):  
Mohammad Reza Mirzaei ◽  
Zulfigar Yasin ◽  
Aileen Tan Shau Hwai

Length-weight relationship, growth parameters and mortality rates ofAnadara granosain the intertidal zone of Balik Pulau, Penang Island, West Coast of Malaysia were investigated based on monthly length-frequency data (December 2011 to November 2012). A total of 548 individuals ranging from 11.25 to 33.13 mm size were subjected to analysis. Logarithmic relationship between the length and weight was LogW = 2.328LogL − 2.537 (R2 = 0.922) for combined sexes. From this equation it was clear that the exponent ‘b’ value forA. granosashowed a negative allometric growth (b < 3). A von Bertalanffy growth function with an asymptotic length (L∞) of 35.40 mm and a growth constant (K) of 1.1 year−1was established from length frequency distributions. Thet0(−0.140) was estimated by substituting theL∞andKin the Pauly's equation. The sizes attained byA. granosawere 10.13, 14.36, 17.89, 20.82, 23.56 and 25.29 mm at the end of 2, 4, 6, 8, 10 and 12 months, respectively. The estimated growth performance index (Ø) was 3.13 while the estimated lifespan of the cockles was about 2.72 years at the study area. The estimated value of total mortality based on length-converted catch curve wasZ = 3.02 year−1. The natural mortality (M) and fishing mortality (F) rates were 1.84 and 0.48 year−1, respectively. The exploitation level (E) ofA. granosawas 0.20, which indicated slight fishing pressure on the stock.


2019 ◽  
pp. 23-31 ◽  
Author(s):  
George N. Hotos

Growth and mortality of L. aurata (Risso,1810) were estimated in the lagoon of Klisova-Messolonghi (W. Greece), based on age estimation from scale readings of a total of 1048 individuals, ranging between 10 and 59 cm in total length (TL). Age determination revealed nine age classes (0+ to 8+). Maximum age was found to be 8 years for females and 6 years for males respectively. The growth pattern of L. aurata exhibited allometry (b=3.26). The species seems to achieve 34% of its growth during the first year; thereafter the annual growth rate drops. Both sexes presented similar von Bertalanffy growth curves. The von Bertalanffy growth function for the estimated total length-at-age was found Lt = 70.78 [1 - e -0.129(t+1.345)] for the combined sexes. Otolith weight, length and width were tested and they were found to be very good predictors for age. Between the present L. aurata growth parameters and those of other Mediterranean, Caspian and Atlantic Sea for the same species, there were found significant differences in its growth parameters. The total (Z) and natural (M) mortality rate was found to be 0.54 years-1 and 0.33 years-1 respectively. The estimated exploitation rate was found to be E=0.395 which suggests that the existing fishing pressure on L. aurata is rather moderate in the investigated region.


2007 ◽  
Vol 5 (4) ◽  
pp. 485-490 ◽  
Author(s):  
Giovana Bervian ◽  
Nelson F. Fontoura

The growth of Atherinella brasiliensis (Quoy & Gaimard, 1824) was studied through monthly samples taken at Tramandaí Lagoon, Imbé County, Rio Grande do Sul, Brazil. Animals were captured using a beach seine net. Length-weight relationships and age- growth curves for males and females were adjusted. The growth parameters of the von Bertalanffy growth formulae are Linf=16.0 and k=0.883 for males and Linf=17.0 and k=0.825 for females. First reproduction occurred one year after recruitment. Once reaching maturity, adults of A. brasiliensis reproduced once more in the next spring with two-year-olds and disappeared soon after from size frequency distributions. A few captured animals showed a size compatible with an age of three years.


1997 ◽  
Vol 48 (3) ◽  
pp. 201 ◽  
Author(s):  
Peter L. Horn

A method is described to determine the age of hake by counting zones in sectioned otoliths. The technique was validated to age 1 years from the progression of modes in length–frequency distributions, and for ages 2 years onwards by examining the state of otolith margins from fish sampled regularly over a one-year period. von Bertalanffy growth parameters are estimated for hake on the Campbell Plateau and Stewart–Snares shelf, on the Chatham Rise, and off the west coast of the South Island. Hake grow rapidly for about five years, but growth is slight after about 12 years. Female fish have a significantly faster rate of growth than males. A value forM of 0·20–0·25 is proposed. Differences in growth rates and population age distributions imply that there are at least two stocks of hake in New Zealand waters, with fish off the west coast of the South Island being distinct from those on the Campbell Plateau and Chatham Rise.


2019 ◽  
Vol 99 (06) ◽  
pp. 1417-1427 ◽  
Author(s):  
Vasiliki Kousteni ◽  
Aikaterini Anastasopoulou ◽  
Chryssi Mytilineou

AbstractAlthough the red striped mullet is one of the main target fish of the Hellenic demersal fisheries, information about its biology is limited. The aim of this study was to describe the reproductive biology and growth of the species in the south Aegean Sea based on 1032 individuals sampled under the Data Collection Framework Program in 2016. According to the monthly variation of the maturity stages and the gonadosomatic index, spawning activity took place from March to July, although it appeared to occur throughout the year. Length at 50% maturity (L50) was 153.3 and 139.2 mm in females and males, respectively. Individual ages were determined by counting the annuli of otoliths macroscopically. Marginal increment analysis (MIA) combined with complementary information derived from otolith edge analysis, the assessment of the reproductive period and the length–frequency distribution modes of the population showed that annulus formation occurs between February and April. The length–weight relationship revealed a significant sex effect and was described by the parameters α = 0.0155 and b = 2.915 in females, and α = 0.0032 and b = 2.976 in males. The von Bertalanffy growth function (VBGF) parameters for sexes combined were Linf = 346.1 mm, k = 0.299 year−1 and t0 = −0.984 years. Longevity (tmax) was estimated at 11.75 years. This study provides valuable data for the stock assessment of M. surmuletus in one of the major Hellenic fishing grounds located in the south Aegean Sea.


Author(s):  
A., C. Prasetyo

Overpressure existence represents a geological hazard; therefore, an accurate pore pressure prediction is critical for well planning and drilling procedures, etc. Overpressure is a geological phenomenon usually generated by two mechanisms, loading (disequilibrium compaction) and unloading mechanisms (diagenesis and hydrocarbon generation) and they are all geological processes. This research was conducted based on analytical and descriptive methods integrated with well data including wireline log, laboratory test and well test data. This research was conducted based on quantitative estimate of pore pressures using the Eaton Method. The stages are determining shale intervals with GR logs, calculating vertical stress/overburden stress values, determining normal compaction trends, making cross plots of sonic logs against density logs, calculating geothermal gradients, analyzing hydrocarbon maturity, and calculating sedimentation rates with burial history. The research conducted an analysis method on the distribution of clay mineral composition to determine depositional environment and its relationship to overpressure. The wells include GAP-01, GAP-02, GAP-03, and GAP-04 which has an overpressure zone range at depth 8501-10988 ft. The pressure value within the 4 wells has a range between 4358-7451 Psi. Overpressure mechanism in the GAP field is caused by non-loading mechanism (clay mineral diagenesis and hydrocarbon maturation). Overpressure distribution is controlled by its stratigraphy. Therefore, it is possible overpressure is spread quite broadly, especially in the low morphology of the “GAP” Field. This relates to the delta depositional environment with thick shale. Based on clay minerals distribution, the northern part (GAP 02 & 03) has more clay mineral content compared to the south and this can be interpreted increasingly towards sea (low energy regime) and facies turned into pro-delta. Overpressure might be found shallower in the north than the south due to higher clay mineral content present to the north.


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Author(s):  
Dalilla da Silva Salvati ◽  
Júlia Fernandes Perroca ◽  
Sabrina Morilhas Simões ◽  
Antonio Leão Castilho ◽  
Rogerio Caetano da Costa

AbstractThe study characterized the structure of juveniles and sub-adults of Farfantepenaeus brasiliensis and F. paulensis in the Cananéia-Iguape estuarine lagoon system and its adjacent coastal area by evaluating the period of juvenile recruitment, sex ratio, growth, longevity, natural mortality, and development time until the late juvenile phase. Samples were collected from July 2012 to June 2014. Shrimps were identified by species and sex, and measured (carapace length – CL mm); 889 individuals of F. brasiliensis and 848 of F. paulensis were analysed. Females were more abundant than males for both species. The growth parameters of F. brasiliensis were: CL∞ = 45.5 mm, k = 1.8 year−1 for males and CL∞ = 55.2 mm, k = 1.6 year−1 for females; longevity of 2.52 years (males) and 2.88 years (females); and natural mortality of 1.71 (males) and 1.55 (females). For F. paulensis, the following values were observed: CL∞ = 40.7 mm, k = 2.3 year−1 for males and CL∞ = 56.5 mm, k = 1.9 year−1 for females; longevity of 2.04 years (males) and 2.37 years (females); and natural mortality of 2.39 (males) and 2.05 (females). The juvenile recruitment of both species peaked in January 2014. The development time until late juvenile phase was ~7 months (F. brasiliensis) and ~5 months (F. paulensis). Even though the highest abundance of juveniles did not occur in the closed season, fishing is forbidden in the estuarine area and the migration towards the adult population occurred close to or even during the closed season.


2015 ◽  
Vol 66 (12) ◽  
pp. 1176 ◽  
Author(s):  
M. Kai ◽  
K. Shiozaki ◽  
S. Ohshimo ◽  
K. Yokawa

This paper presents an estimation of growth curves and spatiotemporal distributions of juvenile shortfin mako shark (Isurus oxyrinchus) in the western and central North Pacific Ocean using port sampling data collected from 2005 to 2013. The monthly length compositions show a clear transition of three modes in the size range of smaller than 150-cm precaudal length (PCL), which were believed to represent the growth of age-0 to age-2 classes, and they were then decomposed into age groups by fitting a Gaussian mixture distribution. Simulation data of lengths at monthly ages were generated from the mean and standard deviation of each distribution, and fit with a von Bertalanffy growth function. Parameters of the estimated growth curves for males and females were 274.4 and 239.4cm PCL for the asymptotic length and 0.19 and 0.25 year–1 for the growth coefficient indicating apparently faster growth than previously reported. Generalised linear models were applied to age-0 to explore the seasonal changes of PCL by area. They were born during late autumn and winter off the coast of north-eastern Japan, an area known to have relatively high productivity compared with other pelagic areas, and gradually expanded their habitat eastward and northward with the seasons as they grew.


1962 ◽  
Vol 4 (1) ◽  
pp. 144-164 ◽  
Author(s):  
C. S. Taylor

1. The stability with which dairy cattle develop in body size up to 2 years of age was studied in 60 pairs of uniformly treated identical twins, i.e. an assessment was made of the influence of season, genotype, mean size of twin pair, age and degree of maturity on the level of within-pair variability.2. The frequency distributions of size differences shown by one-egg twins were in many cases decidedly leptokurtic.3. The similarity in size of the identical twins studied was only slightly, if at all, influenced by season. Within-pair variability under free outdoor grazing was certainly not any greater than under semi-controlled conditions indoors.4. The stability with which cattle grew appeared to depend on their genotype. Identical twins of the Shorthorn breed were somewhat more alike in size than were the twins of other breed-types; crossbreds were, on average, 50 % less stable than purebreds in average size () ; although crossbreds grew with somewhat greater stability ().5. Whatever their mean size, all pairs of identical twins of the same breed appeared to grow postnatally with more or less equal stability (). Small, slow growing pairs showed a greater disparity in average size ().6. Stability of development continually changed with age but not violently. Each body measurement appeared to have its own characteristic age trend. It is false to believe that variation automatically increases with increasing age. As they grew older, identical twins tended to become less alike in their later maturing body measurements whereas their early maturing body measurements tended to decline in variability. There was an overall trend with degree of maturity; variability steadily increased to a maximum and subsequently declined.7. It is suggested that environmentally induced instability of development may remain at a minimum level so long as growth curves are not seriously distorted from their exponential path to maturity.


Sign in / Sign up

Export Citation Format

Share Document