scholarly journals Some of them came home: the Cayman Turtle Farm headstarting project for the green turtle Chelonia mydas

Oryx ◽  
2005 ◽  
Vol 39 (2) ◽  
pp. 137-148 ◽  
Author(s):  
Catherine D.L. Bell ◽  
Joe Parsons ◽  
Timothy J. Austin ◽  
Annette C. Broderick ◽  
Gina Ebanks-Petrie ◽  
...  

Headstarting is a management technique employed to enhance recruitment of turtles into diminished or extirpated marine turtle populations. Although there have been numerous projects worldwide, there has been a paucity of detailed investigations into its efficacy. Between 1980 and 2001, 16,422 captive-raised hatchlings and 14,347 yearling green marine turtles Chelonia mydas were released from the Cayman Turtle Farm. Approximately 80% of all turtles released were subject to some form of tagging, including living tags. A total of 392 tagged animals have been recaptured at intervals of up to 19 years. Of this total, 160 individuals were captured in the Cayman Islands and 232 were recorded from other locations within the wider Caribbean and southeastern USA. There was significant variation in the release-recapture intervals at the three countries with most returns (Cayman, Cuba and Nicaragua). A positive relationship exists between time at large and size at recapture and data suggest growth rates comparable to those of wild green turtles in the region. There have been at least six living tag returns, four involving turtles released as yearlings and two involving turtles released as hatchlings. This demonstrates an age at maturity that may be as short as 15–19 years, depending on stage of release. Results show that some headstarted turtles are moving around the Caribbean, surviving for long periods of time, contributing to the local breeding population, and are possibly displaying shifts in habitat utilization with age similar to those recorded by wild individuals.

2021 ◽  
Vol 168 (6) ◽  
Author(s):  
Josie L. Palmer ◽  
Damla Beton ◽  
Burak A. Çiçek ◽  
Sophie Davey ◽  
Emily M. Duncan ◽  
...  

AbstractDietary studies provide key insights into threats and changes within ecosystems and subsequent impacts on focal species. Diet is particularly challenging to study within marine environments and therefore is often poorly understood. Here, we examined the diet of stranded and bycaught loggerhead (Caretta caretta) and green turtles (Chelonia mydas) in North Cyprus (35.33° N, 33.47° E) between 2011 and 2019. A total of 129 taxa were recorded in the diet of loggerhead turtles (n = 45), which were predominantly carnivorous (on average 72.1% of dietary biomass), foraging on a large variety of invertebrates, macroalgae, seagrasses and bony fish in low frequencies. Despite this opportunistic foraging strategy, one species was particularly dominant, the sponge Chondrosia reniformis (21.5%). Consumption of this sponge decreased with increasing turtle size. A greater degree of herbivory was found in green turtles (n = 40) which predominantly consumed seagrasses and macroalgae (88.8%) with a total of 101 taxa recorded. The most dominant species was a Lessepsian invasive seagrass, Halophila stipulacea (31.1%). This is the highest percentage recorded for this species in green turtle diet in the Mediterranean thus far. With increasing turtle size, the percentage of seagrass consumed increased with a concomitant decrease in macroalgae. Seagrass was consumed year-round. Omnivory occurred in all green turtle size classes but reduced in larger turtles (> 75 cm CCL) suggesting a slow ontogenetic dietary shift. Macroplastic ingestion was more common in green (31.6% of individuals) than loggerhead turtles (5.7%). This study provides the most complete dietary list for marine turtles in the eastern Mediterranean.


2004 ◽  
Vol 118 (1) ◽  
pp. 72 ◽  
Author(s):  
Donald F. McAlpine ◽  
Stan A. Orchard ◽  
Kelly A. Sendall ◽  
Rod Palm

Marine turtles in British Columbia have previously been considered off course stragglers. Here we document 20 new reports for Green Turtles, Chelonia mydas, and Leatherback Turtles, Dermochelys coriacea, for the province. Until recently there had been no concerted effort to acquire data on marine turtle abundance or frequency off British Columbia. Observations presented here allow a reassessment of marine turtle status in British Columbia waters. We suggest Green Turtles and Leatherbacks should be considered rare vagrants and uncommon seasonal residents, respectively, off British Columbia and that they are a natural part of the British Columbia marine environment.


2011 ◽  
Vol 279 (1731) ◽  
pp. 1077-1084 ◽  
Author(s):  
Sam B. Weber ◽  
Annette C. Broderick ◽  
Ton G. G. Groothuis ◽  
Jacqui Ellick ◽  
Brendan J. Godley ◽  
...  

The effect of climate warming on the reproductive success of ectothermic animals is currently a subject of major conservation concern. However, for many threatened species, we still know surprisingly little about the extent of naturally occurring adaptive variation in heat-tolerance. Here, we show that the thermal tolerances of green turtle ( Chelonia mydas ) embryos in a single, island-breeding population have diverged in response to the contrasting incubation temperatures of nesting beaches just a few kilometres apart. In natural nests and in a common-garden rearing experiment, the offspring of females nesting on a naturally hot (black sand) beach survived better and grew larger at hot incubation temperatures compared with the offspring of females nesting on a cooler (pale sand) beach nearby. These differences were owing to shallower thermal reaction norms in the hot beach population, rather than shifts in thermal optima, and could not be explained by egg-mediated maternal effects. Our results suggest that marine turtle nesting behaviour can drive adaptive differentiation at remarkably fine spatial scales, and have important implications for how we define conservation units for protection. In particular, previous studies may have underestimated the extent of adaptive structuring in marine turtle populations that may significantly affect their capacity to respond to environmental change.


Oryx ◽  
2001 ◽  
Vol 35 (2) ◽  
pp. 145-151 ◽  
Author(s):  
Jonathan J. Aiken ◽  
Brendan J. Godley ◽  
Annette C. Broderick ◽  
Timothy Austin ◽  
Gina Ebanks-Petrie ◽  
...  

AbstractLarge populations of marine turtles breeding in the Cayman Islands were drastically reduced in the early 1800s. However, marine turtle nesting still occurs in the islands. The present-day status of this nesting population provides insight into the conservation of marine turtles, a long-lived species. In 1998 and 1999, the first systematic survey of marine turtle nesting in the Cayman Islands found 38 nests on 22 beaches scattered through the three islands. Three species were found: the green Chelonia mydas, hawksbill Eretmochelys imbricata and loggerhead Caretta caretta turtles. Comparison with other rookeries suggests that the small number of sexually mature adults surviving Cayman's huge perturbations may be impeding population recovery. This shows the need to implement conservation measures prior to massive reductions in population size.


Oryx ◽  
1992 ◽  
Vol 26 (3) ◽  
pp. 165-171 ◽  
Author(s):  
Stephanie J. Coley ◽  
Andrew C. Smart

The green turtle Chelonia mydas is one of two marine turtle species to nest in Turkey. Its three main nesting beaches are in eastern Turkey, with possibly the densest congregation of nesting turtles in the Mediterranean being found at Kazanli. However, beach erosion, hatchling predation, agricultural encroachment and chemical pollution mean that the future of the Kazanli nest site is uncertain. The Turkish Society for the Protection of Nature (Dogal Hayati Koruma Dernegi) is making valiant efforts to protect all the turtle nesting beaches in Turkey but lacks detailed information on the numbers of nesting turtles on many beaches. This paper describes a short study of nesting turtles at Kazanli during 1990 and makes recommendations for the conservation of the nesting beach.


Oryx ◽  
2017 ◽  
Vol 53 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Mike I. Olendo ◽  
Gladys M. Okemwa ◽  
Cosmas N. Munga ◽  
Lilian K. Mulupi ◽  
Lily D. Mwasi ◽  
...  

AbstractMonitoring of nesting beaches is often the only feasible and low-cost approach for assessing sea turtle populations. We investigated spatio-temporal patterns of sea turtle nesting activity monitored over 17 successive years in the Lamu archipelago, Kenya. Community-based patrols were conducted on 26 stretches of beach clustered in five major locations. A total of 2,021 nests were recorded: 1,971 (97.5%) green turtleChelonia mydasnests, 31 (1.5%) hawksbillEretmochelys imbricatanests, 8 (0.4%) olive ridleyLepidochelys olivaceanests and 11 (0.5%) unidentified nests. Nesting occurred year-round, increasing during March–July, when 74% of nests were recorded. A stable trend in mean annual nesting densities was observed in all locations. Mean clutch sizes were 117.7 ± SE 1 eggs (range 20–189) for green turtles, 103±SE 6 eggs (range 37–150) for hawksbill turtles, and 103±SE 6 eggs (range 80–133) for olive ridley turtles. Curved carapace length for green turtles was 65–125 cm, and mean annual incubation duration was 55.5±SE 0.05 days. The mean incubation duration for green turtle nests differed significantly between months and seasons but not locations. The hatching success (pooled data) was 81.3% (n = 1,841) and was higher for in situ nests (81.0±SE 1.5%) compared to relocated nests (77.8±SE 1.4%). The results highlight the important contribution of community-based monitoring in Kenya to sustaining the sea turtle populations of the Western Indian Ocean region.


2017 ◽  
Vol 23 (1) ◽  
pp. 39
Author(s):  
Adriani Sri Nastiti ◽  
Masayu Rahmia Anwar Putri ◽  
Joni Haryadi ◽  
Arif Wibowo ◽  
Ngurah N Wiadnyana

Marine turtle is one of the protected aquatic animals as listed in CITES Appendix and IUCN red list. However, illegal fishing of marine turtle is still occurred Padei Laut Village, in Morowali Regency, Central Sulawesi Province, Indonesia. The research aims to study the population of marine turtle based on the carapace length and the genetic relationships. Data of carapace length was measured in-situ and genetic analysis was used mitochondrial DNA. The results showed that the carapace (ten samples which was green turtles/Chelonia mydas) was ranges between 42-102 cm; 91% of samples was immature and 9% was mature. Moreover, it also revealed that those turtles resembled by 99.98% of genetic similarity.


2010 ◽  
Vol 61 (12) ◽  
pp. 1376 ◽  
Author(s):  
Kiki E. M. Dethmers ◽  
Michael P. Jensen ◽  
Nancy N. FitzSimmons ◽  
Damien Broderick ◽  
Colin J. Limpus ◽  
...  

Coastal seagrass habitats in tropical and subtropical regions support aggregations of resident green turtles (Chelonia mydas) from several genetically distinct breeding populations. Migration of individuals to their respective dispersed breeding sites provides a complex pattern of migratory connectivity among nesting and feeding habitats of this species. An understanding of this pattern is important in regions where the persistence of populations is under threat from anthropogenic impacts. The present study uses mitochondrial DNA and mixed-stock analyses to assess the connectivity among seven feeding grounds across the north Australian coast and adjacent areas and 17 genetically distinct breeding populations from the Indo-Pacific region. It was hypothesised that large and geographically proximate breeding populations would dominate at nearby feeding grounds. As expected, each sampled feeding area appears to support multiple breeding populations, with two aggregations dominated by a local breeding population. Geographic distance between breeding and feeding habitat strongly influenced whether a breeding population contributed to a feeding ground (wi = 0.654); however, neither distance nor size of a breeding population was a good predictor of the extent of their contribution. The differential proportional contributions suggest the impact of anthropogenic mortality at feeding grounds should be assessed on a case-by-case basis.


2008 ◽  
Vol 15 (5) ◽  
pp. 843-851 ◽  
Author(s):  
Lawrence H. Herbst ◽  
Shefali Lemaire ◽  
Ada R. Ene ◽  
David J. Heslin ◽  
Llewellyn M. Ehrhart ◽  
...  

ABSTRACT Chelonid fibropapillomatosis-associated herpesvirus (CFPHV) is an alphaherpesvirus believed to cause marine turtle fibropapillomatosis (FP). A serodiagnostic assay was developed for monitoring sea turtle populations for CFPHV exposure. CFPHV glycoprotein H (gH) expressed in recombinant baculovirus was used in an enzyme-linked immunosorbent assay (ELISA) to detect virus-specific 7S turtle antibodies. Using captive-reared green turtles (Chelonia mydas) with no history of virus exposure as “known negatives” and others with experimentally induced FP as “known positives,” the assay had 100% specificity but low sensitivity, as seroconversion was detected in only half of the turtles bearing experimentally induced tumors. Antibodies were detected only in samples collected after cutaneous fibropapillomas appeared, consistent with observations that tumors are significant sites of virion production and antigen expression and the possibility that prolonged/repeated virus shedding may be required for adequate stimulation of 7S antibody responses to gH. Natural routes of infection, however, may produce higher seroconversion rates. High gH antibody seroprevalences (∼80%) were found among wild green turtles in three Florida localities with different FP prevalences, including one site with no history of FP. In addition, all eight loggerhead turtles (Caretta caretta) tested were seropositive despite FP being uncommon in this species. The possibility that CFPHV infection may be common relative to disease suggests roles for environmental and host factors as modulators of disease expression. Alternatively, the possibility of other antigenically similar herpesviruses present in wild populations cannot be excluded, although antibody cross-reactivity with the lung/eye/trachea disease-associated herpesvirus was ruled out in this study.


Sign in / Sign up

Export Citation Format

Share Document