The ultrastructure of the cysticercoid of Tatria octacantha Rees, 1973 (Cyclophyllidea: Amabiliidae) from the haemocoele of the damsel-fly nymphs Pyrrhosoma nymphula, Sulz and Enallagma cyathigerum, Charp

Parasitology ◽  
1973 ◽  
Vol 67 (1) ◽  
pp. 85-103 ◽  
Author(s):  
Gwendolen Rees

The cysticercoid of Tatria octacantha Rees, 1973 from the haemocoele of damsel-fly nymphs consists of an outer and inner cyst. The tegument of the outer surface of the outer cyst bears long slender microvilli which increase the surface area presumably for absorption. The tegument on the inner surface bears electron-dense microvilli and contains vesicles embedded in an electron-dense material. The contents of the vesicles resemble those of the central cavity in which the inner cyst floats freely. Nutrients absorbed by the outer cyst pass into the central cavity where they are available to the inner cyst.

Parasitology ◽  
1984 ◽  
Vol 88 (1) ◽  
pp. 117-130 ◽  
Author(s):  
Barbara M. MacKinnon ◽  
M. D. B. Burt

SUMMARYThe development of the tegument and cercomer ofParicterotaenia paradoxapolycephalic larvae was examined using electron microscopy. Larvae are formed by budding from the inner surface of the tegument of the degenerating hexacanth embryo. A new secondary tegument formed around the larvae is probably produced from the original hexacanth sub-tegumental cells. Microvilli covering the surface of young larvae are converted directly into microtriches, as the larvae develop, by addition of electron-dense material to the proximal part of the microvillus. Remnants of the original microvillus are visible at the distal surface of each new microthrix, but they eventually degenerate. The cercomer homologue is represented by scattered follicular cells, bearing microvilli, lying just within the containing cyst wall. The continuity of tegumentary tissue from one developmental stage to the next is discussed.


Author(s):  
B. J. Panessa ◽  
J. F. Gennaro

Tissue from the hood and sarcophagus regions were fixed in 6% glutaraldehyde in 1 M.cacodylate buffer and washed in buffer. Tissue for SEM was partially dried, attached to aluminium targets with silver conducting paint, carbon-gold coated(100-500Å), and examined in a Kent Cambridge Stereoscan S4. Tissue for the light microscope was post fixed in 1% aqueous OsO4, dehydrated in acetone (4°C), embedded in Epon 812 and sectioned at ½u on a Sorvall MT 2 ultramicrotome. Cross and longitudinal sections were cut and stained with PAS, 0.5% toluidine blue and 1% azure II-methylene blue. Measurements were made from both SEM and Light micrographs.The tissue had two structurally distinct surfaces, an outer surface with small (225-500 µ) pubescent hairs (12/mm2), numerous stoma (77/mm2), and nectar glands(8/mm2); and an inner surface with large (784-1000 µ)stiff hairs(4/mm2), fewer stoma (46/mm2) and larger, more complex glands(16/mm2), presumably of a digestive nature.


Author(s):  
J. R. Ruby ◽  
R. F. Dyer ◽  
R. G. Skalko ◽  
R. F. Gasser ◽  
E. P. Volpe

An electron microscope examination of fetal ovaries has revealed that developing germ cells are connected by intercellular bridges. In this investigation several species have been studied including human, mouse, chicken, and tadpole (Rana pipiens). These studies demonstrate that intercellular connections are similar in morphology regardless of the species.Basically, all bridges are characterized by a band of electron-dense material on the cytoplasmic side of the tri-laminar membrane surrounding the connection (Fig.l). This membrane is continuous with the plasma membrane of the conjoined cells. The dense material, however, never extends beyond the limits of the bridge. Variations in the configuration of intercellular connections were noted in all ovaries studied. However, the bridges in each individual species usually exhibits one structural characteristic seldom found in the others. For example, bridges in the human ovary very often have large blebs projecting from the lateral borders whereas the sides of the connections in the mouse gonad merely demonstrate a slight convexity.


1971 ◽  
Vol 49 (12) ◽  
pp. 2067-2073 ◽  
Author(s):  
L. J. Littlefield ◽  
C. E. Bracker

The urediospores of Melampsora lini (Ehrenb.) Lev. are echinulate, with spines ca. 1 μ long over their surface. The spines are electron-transparent, conical projections, with their basal portion embedded in the electron-dense spore wall. The entire spore, including the spines, is covered by a wrinkled pellicle ca. 150–200 Å thick. The spore wall consists of three recognizable layers in addition to the pellicle. Spines form initially as small deposits at the inner surface of the spore wall adjacent to the plasma membrane. Endoplasmic reticulum occurs close to the plasma membrane in localized areas near the base of spines. During development, the spore wall thickens, and the spines increase in size. Centripetal growth of the wall encases the spines in the wall material. The spines progressively assume a more external position in the spore wall and finally reside at the outer surface of the wall. A mutant strain with finely verrucose spores was compared to the wild type. The warts on the surface of the mutant spores are rounded, electron-dense structures ca. 0.2–0.4 μ high, in contrast to spines of the wild type. Their initiation near the inner surface of the spore wall and their eventual placement on the outer surface of the spore are similar to that of spines. The wall is thinner in mutant spores than in wild-type spores.


1975 ◽  
Vol 53 (22) ◽  
pp. 2589-2597 ◽  
Author(s):  
H. H. Edwards

M1-a-mediated resistance in barley to invasion by the CR3 race of Erysiphe graminis f. sp. hordei does not occur in every host cell with the same speed and severity. In some cells ultrastructural changes within the host cell as a result of resistance will occur within 24 h after inoculation, whereas in other cells these changes may take up to 72 h. In some cells the ultrastructural changes are so drastic that they give the appearance of a hypersensitive death of the host cell, whereas in other cells the changes are very slight. In any case, at the end of these changes the fungus ceases growth. The ultrastructural changes occur in penetrated host epidermal cells as well as non-infected adjacent epidermal and mesophyll cells.The following ultrastructural changes have been observed: (1) an electron-dense material which occurs either free in the vacuole or adhering to the tonoplast (the material is granular or in large clumps); (2) an increased electron density of the host cytoplasm and nucleus; (3) a breakdown of the tonoplast so that the cytoplasmic constituents become dispersed throughout the cell lumen; and (4) the deposition of papillar-like material in areas other than the penetration site. The first three changes take place within the host cell protoplasts and are directly attributable to the gene M1-a. These changes are typical of stress or incompatibility responses and thus M1-a appears to trigger a generalized incompatibility response in the presence of race CR3. The papillar-like material occurs outside the host cell protoplast in the same manner as the papilla and probably is not directly attributable to M1-a.


2017 ◽  
Vol 84 (4) ◽  
pp. 215-217 ◽  
Author(s):  
Kalanghot P. Skandhan ◽  
Ashutosh Soni ◽  
Anantkumar Joshi ◽  
Kalanghot P.S. Avni ◽  
Bansi Dhar Gupta

Introduction The organ epididymis is secured the name considering it functioned as an appendix to the testis; earlier testis was called as didymi. Regarding the length of human epididymis, several values are attributed by different authors. The present study was aimed to find out the pattern, total length and inner surface area of human epididymis. Materials and Methods The study was conducted by employing microsurgical procedures on five testes from unclaimed human dead bodies. Results Caput was formed by few tubes interconnecting at three levels. These tubes led to corpus, which in turn was having more number of tubes interconnecting at different levels. Tubules were many looking like a mesh. United tubes of corpus form the single tube to form cauda. Epididymis length was 30.48 cm. Inner surface area was 818.16 mm2. Conclusions Reported values of others seem to be a modified version from that of animals. Authors believe that organic revolutionary changes in man led to a reduction in the length of epididymis.


Author(s):  
Seiji Ioka ◽  
Shiro Kubo ◽  
Mayumi Ochi ◽  
Kiminobu Hojo

Thermal fatigue may develop in piping elbow with high temperature stratified flow. To prevent the fatigue damage by stratified flow, it is important to know the distribution of thermal stress and temperature history in a pipe. In this study, heat conduction inverse analysis method for piping elbow was developed to estimate the temperature history and thermal stress distribution on the inner surface from the outer surface temperature history. In the inverse analysis method, the inner surface temperature was estimated by using the transfer function database which interrelates the inner surface temperature with the outer surface temperature. Transfer function database was calculated by FE analysis in advance. For some patterns of the temperature history, inverse analysis simulations were made. It was found that the inner surface temperature history was estimated with high accuracy.


Development ◽  
1970 ◽  
Vol 24 (1) ◽  
pp. 95-108
Author(s):  
J. M. Augustine

The role of the ectoderm in the expansion of the mesoderm in the area vasculosa of the chicken embryo was studied. The basement membrane of the ectoderm was found to constitute a substratum for the expansion of both layers of mesoderm, since (a) the somatic mesoderm, particularly at its margin, adheres to the basement membrane, and (b) the somatic and splanchnic mesoderm adhere to each other throughout most of the area opaca. Following removal of the ectoderm from the outer surface of the basement membrane, movement of the underlying mesoderm along its inner surface stopped. Mean expansion of the mesoderm in these cases was zero. Following removal of both ectoderm and basement membrane, expansion of the underlying mesoderm was normal in amount. Experimental changes in the ectodermal substratum can thus stop movement of the associated mesoderm, but the role which the substratum normally plays in mesodermal expansion remains unclear.


1985 ◽  
Vol 79 (1) ◽  
pp. 161-179 ◽  
Author(s):  
S.L. Tamm ◽  
S. Tamm

Macrocilia from the lips of the ctenophore Beroe consist of multiple rows of ciliary axonemes surrounded by a common membrane, with a giant capping structure at the tip. The cap is formed by extensions of the A and central-pair microtubules, which are bound together by electron-dense material into a pointed projection about 1.5 micron long. The tip undergoes visible changes in configuration during the beat cycle of macrocilia. In the rest position at the end of the effective stroke (+30 degrees total bend angle), there is no displacement between the tips of the axonemes, and the capping structure points straight into the stomach cavity. In the sigmoid arrest position at the end of the recovery stroke (−60 degrees total bend angle), the tip of the macrocilium is hook-shaped and points toward the stomach in the direction of the subsequent effective stroke. This change in tip configuration is caused by sliding displacement of microtubules that are bound together at their distal ends. Electron microscopy and two-dimensional models show that the singlet microtubule cap acts as if it were hinged to the ends of the axonemes and tilted to absorb the microtubule displacement that occurs during the recovery stroke. The straight and hooked shapes of the tip are thought to help the ctenophore ingest prey.


1984 ◽  
Vol 66 (1) ◽  
pp. 175-187
Author(s):  
M. Fukumoto

The apical structure in Perophora annectens spermatozoa is approximately 4 micron in length and it is helically coiled. Its major component is a striated structure, which may be analogous to a perforatorium. The plasmalemma enclosing the anterior quarter of the apical structure is covered by extracellular materials, the anterior ornaments. During spermiogenesis, the apical structure is first recognized as a small blister of the plasmalemma at the apex of the young spermatid. It develops into a conical protrusion and then into a finger-like process (approximately 1 micron in length). This process is transformed into an elongated process (approximately 4 micron in length) with electron-dense material in its core. Finally, the elongated process is helically coiled to form an apical structure in which electron-dense material forms dense striations. Vesicles (50-70 nm in diameter), presumably derived from the Golgi apparatus, have been recognized in the blisters of younger spermatids, and can be followed through to the finger-like process. In the finger-like process these vesicles are transformed into smaller vesicles (20-30 nm in diameter), which probably fuse with the anterior plasmalemma of the finger-like process. This suggests that chorion lysin(s) is associated with the anterior membrane enclosing the apical structure in these spermatozoa.


Sign in / Sign up

Export Citation Format

Share Document