Effect of temperature on the development of free-living adults of Strongyloides papillosus (Wedl, 1856)

Parasitology ◽  
1963 ◽  
Vol 53 (3-4) ◽  
pp. 483-489 ◽  
Author(s):  
Premvati

Strongyloides papillosus is found to be very common in the Lucknow area where 90% of the sheep are infected. The life-cycle is predominantly indirect, or heterogonic. The development of mature free-living adults takes place between 20° and 37° C., and 34° C. is the optimum temperature. At a temperature of 25° C., the percentage of free-living adults is 60–65 in summer (March to November) and practically 100 in winter (December to February). Immature females can develop at 40° C. in summer, but not in winter, under laboratory conditions.Inhibition experiments in a hot oven incubator with varying percentages of humidity, and in a humidity chamber incubator with constant 100% humidity, maintained at temperatures varying from 40° to 50° C., show that in the humidity chamber incubator mature free-living adults develop at 34° C. after incubation for 12 hr. at 40° C., after 4 hr. at 42° C., after 2 hr. at 45° C. and after 15 min. at 50° C. The hot oven incubator allows mature free-living adults to develop at 34° C. after 8 hr. at 40° C., after 2 hr. at 42° C., after 1 hr. at 45° C. and after 15 min. at 50° C.

1958 ◽  
Vol 36 (4) ◽  
pp. 623-628 ◽  
Author(s):  
Premvati

The optimum temperature for the complete development of the free-living and the infective larvae of Strongyloides fülleborni is 25 °C. Morphological changes are seen at higher or lower temperatures.


Author(s):  
Eva Sapáková ◽  
Hana Šefrová ◽  
Lea Hasíková ◽  
Luděk Hřivna

The aim of the three year research was to determine the first occurrence of Delia antiqua (Meigen, 1826) (Diptera: Anthomyiidae), specify its bionomics, compare its harmfulness on different garlic varieties, find out the effect of temperature on their life cycle and how their abundance influences garlic yield in regional agriculture areas traditionally growing garlic such as southeast and central Moravia. There was a significantly higher infestation of Delia antiqua on the edge (32.3 larvae) of study plot than in the middle (16.3 larvae) from 2010 to 2012. Intensive laying eggs of D. antiqua takes place between 9–11 a.m. and 16–18 p.m. hours at the edges of the study plot. The highest number of laid eggs was of 28 per one plant in Nedakonice. The development lasted 15 days at 21 °C under laboratory conditions.


Nematology ◽  
2012 ◽  
Vol 14 (7) ◽  
pp. 855-867 ◽  
Author(s):  
Stephen Kakaire ◽  
Ivan G. Grove ◽  
Patrick P.J. Haydock

Oilseed rape (OSR; Brassica napus L.) is a crop of increasing world importance and suffers yield loss when infected with Heterodera schachtii. The in vitro hatch, in planta root invasion and development of a field population of H. schachtii were investigated in six thermostatically-controlled water baths at temperatures of 5.0, 10.1, 20.5, 27.8, 32.2 and 37.5°C in a glasshouse. The UK winter OSR cvs Flash and Castille were used. Temperature was shown to have a major influence on the development of H. schachtii in OSR. The highest cumulative percentage hatch of second-stage juveniles (J2) observed over an 8-week incubation period occurred between 20.5 and 27.8°C in leachates of both OSR cultivars, indicating that this is the optimum temperature range for hatching of this population. Cumulative hatch was lowest at 37.5 and 5.0°C. Root invasion was inhibited at 5.0 and 37.5°C, whilst the highest number of J2 invaded the roots between 20.5 and 32.2°C, indicating that this is the optimum temperature range for root invasion. The life cycle took between 21 days at 20.5°C and 42 days at 5.0°C from the inoculated J2 to the J2 of the second generation, with the associated accumulated heat units (AHU) of 424 and 203 degree-days with a base temperature (Tb) of 5.0°C. The optimum temperature range (To) for development was between 20.5 and 27.8°C and the maximum (Tm) was 37.5°C. As temperature increased, the AHU required to complete the life cycle increased from 203 degree-days at 5.0°C to 1406 at 37.5°C. Leachates from both OSR cultivars stimulated more J2 to hatch than the distilled water controls. No significant cultivar differences were observed for J2 hatching, root invasion and duration of the life cycle at the different temperatures but significantly more cysts of the second generation (g root)−1 were observed in cv. Flash than cv. Castille at 27.8 and 32.2°C, suggesting that the latter cultivar is a poorer host of H. schachtii than cv. Flash. This is the first report of the effect of temperature on H. schachtii development on current winter OSR cultivars in the UK and provides insight into the potential effects of climate change on the nematode-host interaction.


Author(s):  
Latifa Elhachimi ◽  
Félix Valcárcel ◽  
Angeles S. Olmeda ◽  
Sabrine Elasatey ◽  
Sarah E. Khattat ◽  
...  

AbstractHyalomma marginatum Koch is one of the main tick vectors of human and animal tick-borne diseases. The objective of this study was to establish standard procedures for rearing H. marginatum under laboratory conditions. Such laboratory tick populations are required to study acaricide resistance of Hyalomma ticks. In our rearing program, larvae and nymphs were fed on New Zealand white rabbits, whereas adults were fed on sheep. Non-parasitic stages were held at 18 and 28 °C to study the effect of temperature on development and survival. In our experiments, H. marginatum ticks have maintained the characteristics of a two-host life cycle. The engorged larvae did not detach and moulted on the rabbit, after which the emerged nymphs continued to feed on the same animal. The life cycle duration of H. marginatum was influenced by temperature, with each non-parasitic stage—i.e., larva and nymph molting—developing faster at 28 than at 18 °C; preoviposition and oviposition periods were shorter at 28 than at 18 °C. At 18 °C, no eggs hatched. The whole cycle from the collection of an engorged field tick until the emergence of second-generation larvae took 189 days. One such tick on average results in 3500 eggs which over time, taking into account the losses at each developmental stage, develop into 1200 adult ticks. Rearing these ticks a second generation therefore could result in millions of larval ticks.


2021 ◽  
Vol 9 (3) ◽  
pp. 32-38
Author(s):  
Muhammad Ramzan ◽  

Fall armyworm, Spodoptera frugiperda (Diptera:Lepidoptera) is a destructive pest of agricultural crops especially maize in many countries including Pakistan. The environmental factors like temperature play significant role in the growth and development of insect pests. It is very important to know the proper knowledge about effect of temperature on the development of Spodoptera frugiperda before managing this pest. For this purpose, the current study was conducted to check the effect of temperature (20 and 26◦C) on the life cycle of S. frugiperda under laboratory conditions. The results showed that the developmental times of all stages (eggs, larvae and pupae) were inversely related to temperature. The incubation period of eggs was 4.01±0.00b and 2.00±0.00b at 20 and 26◦C, respectively. The development time of first, second, third, fourth, fifth and sixth larval instar was 3.51±0.10b, 3.04±0.15b, 2.33±0.10b, 2.97±0.14b, 3.45±0.19b and 4.99± 0.22b, respectively at 20◦C while 2.77±0.13c, 2.89±0.20bc, 2.09±0.12bc, 2.22±0.17bc, 2.90±0.23c and 3.56±0.19b, respectively at 26◦C. The time of growth and development was increased at low temperature while reduced at high temperature. The food consumption rate and molting period of larvae can increase at high temperature for complete their growth and development. The current study concluded that environmental factors like temperature are highly effect the insect pests morphology and biology.


2008 ◽  
Vol 45 (3-4) ◽  
pp. 211-217 ◽  
Author(s):  
Eliane M. Piranda ◽  
Paulo Henrique D. Cançado ◽  
Vanessa A. Raia ◽  
Tatiane K. de Almeida ◽  
Marcelo B. Labruna ◽  
...  

Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 432 ◽  
Author(s):  
Melody A. Keena ◽  
Paul M. Moore ◽  
Gregg Bradford

Anoplophora chinensis (Forster) is an invasive species that can damage many tree species in orchard, urban, and forested habitats. Adult survival, reproduction, and egg hatch of A. chinensis from Italy and China are evaluated at eight constant temperatures (5, 10, 15, 20, 25, 30, 35, and 40 °C) under laboratory conditions. The estimated Tmax for longevity was 42 and 33 °C for females and 42 and 39 °C for males from China and Italy, respectively. The estimated Tmax, Tmin, and optimum temperature for fecundity were 35, 9, and 29 °C, respectively. Females laid eggs at 15–30 °C and eggs hatched at 15–35 °C. Days to first oviposition increased exponentially from 13 days at 30 °C to >300 days near 10 °C. The estimated Tmin for egg hatch was 13 °C, the Tmax at 38 °C, and the optimum 29 °C. Percentage hatch was estimated to be highest at 26 °C and have a Tmax of 31 °C and Tmin of 10 °C. These results indicate that summer temperatures over a wide range of latitudes should support beetle survival and reproduction, but at temperatures ≥35 °C, oviposition ceases, and adult survivorship declines. In addition, females may survive into the fall, but lay fewer eggs that may not hatch. These responses of A. chinensis to temperature can be used for developing phenological models to predict the timing of stages for management or eradication efforts.


Parasitology ◽  
2014 ◽  
Vol 141 (9) ◽  
pp. 1203-1215 ◽  
Author(s):  
VICTORIA GILLAN ◽  
EILEEN DEVANEY

SUMMARYNematodes are amongst the most successful and abundant organisms on the planet with approximately 30 000 species described, although the actual number of species is estimated to be one million or more. Despite sharing a relatively simple and invariant body plan, there is considerable diversity within the phylum. Nematodes have evolved to colonize most ecological niches, and can be free-living or can parasitize plants or animals to the detriment of the host organism. In this review we consider the role of heat shock protein 90 (Hsp90) in the nematode life cycle. We describe studies on Hsp90 in the free-living nematode Caenorhabditis elegans and comparative work on the parasitic species Brugia pahangi, and consider whether a dependence upon Hsp90 can be exploited for the control of parasitic species.


2009 ◽  
Vol 160 (1-2) ◽  
pp. 134-137 ◽  
Author(s):  
Ze Chen ◽  
Zhijun Yu ◽  
Xiaojun Yang ◽  
Hongyuan Zheng ◽  
Jingze Liu

2005 ◽  
Vol 37 (5) ◽  
pp. 373-382 ◽  
Author(s):  
William B. SANDERS

The utility of plastic cover slips as a substratum for in situ study of lichen developmental stages is further explored in a neotropical foliicolous lichen community and in a European temperate corticolous community. Twenty-one months after placement in the tropical forest, the cover slips bore foliicolous lichen thalli with several species producing characteristic ascocarps and ascospores, indicating the suitability of the substratum for completion of the life cycle of these lichens. On cover slips placed within the temperate corticolous community, lichen propagules anchored to the substratum with relatively short attachment hyphae but did not develop further within the one year observation period. Intimately intermixed microbial communities of short-celled, mainly pigmented fungi and chlorophyte algae developed upon the transparent substratum. Among the algae, Trebouxia cells, often in groups showing cell division and without associated lichenizing hyphae, were commonly observed. The potential significance of the free-living populations in the life cycle of Trebouxia and in those of Trebouxia-associated lichen fungi is discussed.


Sign in / Sign up

Export Citation Format

Share Document