Inferring infection processes of a parasitic nematode using population genetics

Parasitology ◽  
2000 ◽  
Vol 120 (2) ◽  
pp. 185-194 ◽  
Author(s):  
S. PATERSON ◽  
M. C. FISHER ◽  
M. E. VINEY

The distribution of genetic differentiation in a population of the parasitic nematode Strongyloides ratti divided between rat hosts was determined. We applied population genetic theory to these data to determine the source of new infections. We estimate the rate at which a rat acquires a new infection from (a) the existing subpopulation of parasites within that rat (‘self-reinfection’) versus (b) the wider environment (‘immigration’). We find that the observed levels of genetic diversity and differentiation in the study population are consistent with low to moderate rates of self-reinfection and inconsistent with high rates of self-reinfection.

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
José David Rangel-Medrano ◽  
Edna Judith Márquez

ABSTRACT The Neotropical freshwater catfish Pseudopimelodus atricaudus and Pseudopimelodus magnus are two recently discovered species endemic to the Colombian Magdalena-Cauca River basin. In this study, a set of 13 microsatellite loci were developed by using next generation sequence technology to assess the genetic diversity and population structure in P. atricaudus and test for cross-species amplification in P. magnus. Both species exhibited high genetic diversity (P. atricaudus: Na: 9.000 - 9.769 alleles/locus, Ho: 0.760 - 0.804, HE: 0.804 - 0.840; P. magnus: Na: 12.8 - 5.4 alleles/locus, Ho: 0.638 - 0.683, HE: 0.747 - 0.755) compared to the mean levels of genetic diversity reported for Neotropical Siluriformes, and lack of genetic differentiation among sampling sites within the Cauca River (P. atricaudus: F’ST=0.013 - 0.017, P > 0.05, D’est= -0.004 - 0.023, P > 0.05; P. magnus: F’ST= 0.031, P= 0.055; D’est= 0.045, P= 0.058). This work is the first insight on the diversity and the population genetics of species of the family Pseudopimelodidae and provides a framework to further population genetic and conservation analyses needed in this poorly studied family at the microevolutionary level.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuliang Jiang ◽  
Tsam Ju ◽  
Linda E. Neaves ◽  
Jialiang Li ◽  
Weining Tan ◽  
...  

Population genetic assessment is crucial for the conservation and management of threatened species. Xanthocyparis vietnamensis is an endangered species that is currently restricted to karst mountains in southwestern China and Vietnam. This rare conifer was first recorded in 2002 from northern Vietnam and then in 2013 from Guangxi, China, yet nothing is known about its genetic diversity nor ploidy level variation, although previous cytological study suggest that Vietnamese populations are tetraploids. There have been about 45 individuals found to date in Guangxi, China. Here, we genotyped 33 X. vietnamensis individuals using 20 newly developed, polymorphic microsatellite loci, to assess the genetic variability of its extremely small populations. The genetic diversity of X. vietnamensis (HE = 0.511) was lower than that of two other heliophile species, Calocedrus macrolepis and Fokienia hodginsii, which have similar distribution ranges. This is consistent with the signature of a genetic bottleneck detected in X. vietnamensis. Although the population genetic differentiation coefficient across loci is moderate (FST = 0.125), STRUCTURE analysis revealed two distinct genetic clusters, namely the northern and southern population groups; DAPC analysis grouped the southern populations together in one cluster separate from the northern populations; AMOVA analysis detected a significant genetic differentiation between the two population groups (FRT = 0.089, p < 0.05), and BARRIER analysis detected a genetic barrier between them. Moreover, we detected differentiation in ploidy level between northern and southern populations, sampled individuals from the former and the later are all diploid and tetraploid cytotypes with mean genome sizes of 26.08 and 48.02 pg/2C, respectively. We deduced that heterogeneous geomorphology and historical events (e.g., human deforestation, Quaternary climate oscillations) may have contributed to population fragmentation and small population size in X. vietnamensis. Considering both genetic and ploidy level differentiation, we propose that two different management units (northern and southern) should be considered and a combination of in situ and ex situ conservation measures should be employed to preserve populations of this endangered species in southwestern China in the light of our findings.


2021 ◽  
Author(s):  
Yann Spöri ◽  
Fabio Stoch ◽  
Simon Dellicour ◽  
C. William Birky ◽  
Jean-François Flot

K/θ is a method to delineate species that rests on the calculation of the ratio between the average distance K separating two putative species-level clades and the genetic diversity θ of these clades. Although this method is explicitly rooted in population genetic theory, it was never benchmarked due to the absence of a program allowing automated analyses. For the same reason, its application by hand was limited to small datasets of a few tens of sequences. We present an automatic implementation of the K/θ method, dubbed KoT (short for "K over Theta"), that takes as input a FASTA file, builds a neighbour-joining tree, and returns putative species boundaries based on a user-specified K/θ threshold. This automatic implementation avoids errors and makes it possible to apply the method to datasets comprising many sequences, as well as to test easily the impact of choosing different K/θ threshold ratios. KoT is implemented in Haxe, with a javascript webserver interface freely available at https://eeg-ebe.github.io/KoT/ .


Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 636 ◽  
Author(s):  
Jing Tan ◽  
Zhi-Gang Zhao ◽  
Jun-Jie Guo ◽  
Chun-Sheng Wang ◽  
Jie Zeng

Erythrophleum fordii Oliv. is a valuable rosewood species indigenous to the tropical and warm sub-tropical zones of Vietnam, Laos, and South China. The natural forests have been heavily fragmented mostly due to over-exploitation and over-utilization, and alteration to croplands and fast-growing plantations. Therefore, it has been included in the IUCN Red List of Endangered Species as an endangered species. In the present study, genetic diversity and population genetic structure of 11 populations were estimated by SSR makers in South China. Five high polymorphic loci were studied with a total of 34 alleles, among which, seven were private alleles. The mean number of alleles per locus (A), the mean number of efficient alleles per locus (Ae), the observed (Ho) and expected (He) heterozygosity, and Shannon’s index (I) of the 11 populations were 3.40, 2.31, 0.52, 0.56, and 0.90, respectively. Correlation analysis between genetic parameters and geographical factors showed that He and I were in significant negative correlation with longitude, indicating that genetic diversity of E. fordii reduced gradually from West to East in south China. FIS of eight populations with above five samples was on average 0.01, most loci conformed to Hardy-Weinberg equilibrium in these populations; their genetic differentiation coefficient (FST) was 0.18, indicating that genetic differentiation among populations was relatively low and there existed 18% genetic variation among populations. Gene flow (Nm) between these populations was 1.28. The Mantel test showed that genetic distance was not significantly correlated with geographical distance (p > 0.05). It was concluded that populations with high genetic diversity or private alleles, especially Longmen, Wuming and Pingxiang populations should be a priority for in situ conservations, meanwhile more populations and as many families as possible in each population should be collected for ex situ conservations of germplasm resources of this species in the future.


2015 ◽  
Vol 112 (33) ◽  
pp. 10270-10277 ◽  
Author(s):  
Maureen A. O’Malley

Historically, conceptualizations of symbiosis and endosymbiosis have been pitted against Darwinian or neo-Darwinian evolutionary theory. In more recent times, Lynn Margulis has argued vigorously along these lines. However, there are only shallow grounds for finding Darwinian concepts or population genetic theory incompatible with endosymbiosis. But is population genetics sufficiently explanatory of endosymbiosis and its role in evolution? Population genetics “follows” genes, is replication-centric, and is concerned with vertically consistent genetic lineages. It may also have explanatory limitations with regard to macroevolution. Even so, asking whether population genetics explains endosymbiosis may have the question the wrong way around. We should instead be asking how explanatory of evolution endosymbiosis is, and exactly which features of evolution it might be explaining. This paper will discuss how metabolic innovations associated with endosymbioses can drive evolution and thus provide an explanatory account of important episodes in the history of life. Metabolic explanations are both proximate and ultimate, in the same way genetic explanations are. Endosymbioses, therefore, point evolutionary biology toward an important dimension of evolutionary explanation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qifang Geng ◽  
Zhongsheng Wang ◽  
Jianmin Tao ◽  
Megumi K. Kimura ◽  
Hong Liu ◽  
...  

Mangrove forest ecosystems, which provide important ecological services for marine environments and human activities, are being destroyed worldwide at an alarming rate. The objective of our study was to use molecular data and analytical techniques to separate the effects of historical and contemporary processes on the distribution of mangroves and patterns of population genetic differentiation. Seven mangrove species (Acanthus ilicifolius, Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, Kandelia obovata, Lumnitzera racemosa, and Rhizophora stylosa), which are predominant along the coastlines of South China, were genotyped at nuclear (nSSR) and chloroplast (cpSSR) microsatellite markers. We estimated historical and contemporary gene flow, the genetic diversity and population structure of seven mangrove species in China. All of these seven species exhibited few haplotypes, low levels of genetic diversity (HE = 0.160–0.361, with the exception of K. obovata) and high levels of inbreeding (FIS = 0.104–0.637), which may be due to their marginal geographical distribution, human-driven and natural stressors on habitat loss and fragmentation. The distribution patterns of haplotypes and population genetic structures of seven mangrove species in China suggest historical connectivity between populations over a large geographic area. In contrast, significant genetic differentiation [FST = 0.165–0.629 (nSSR); GST = 0.173–0.923 (cpSSR)] indicates that populations of mangroves are isolated from one another with low levels of contemporary gene flow among populations. Our results suggest that populations of mangroves were historically more widely inter-connected and have recently been isolated, likely through a combination of ocean currents and human activities. In addition, genetic admixture in Beibu Gulf populations and populations surrounding Hainan Island and southern mainland China were attributed to asymmetric gene flow along prevailing oceanic currents in China in historical times. Even ocean currents promote genetic exchanges among mangrove populations, which are still unable to offset the effects of natural and anthropogenic fragmentation. The recent isolation and lack of gene flow among populations of mangroves may affect their long-term survival along the coastlines of South China. Our study enhances the understanding of oceanic currents contributing to population connectivity, and the effects of anthropogenic and natural habitat fragmentation on mangroves, thereby informing future conservation efforts and seascape genetics toward mangroves.


2020 ◽  
Author(s):  
HaiXia Zhan ◽  
ZhongPing Hao ◽  
JingJiang Zhou ◽  
Rui Tang ◽  
LiNi Zhu ◽  
...  

Abstract Background : Strongyllodes variegatus (Fairmaire) is a major insect pest of oilseed rape in China. Despite its economic importance, the population genetics of this pest contributing to the development of suitable management and control strategies is poorly known. To understand the population genetics and assess the geographical patterns and genetic structure of S. variegates in China. Using mitochondrial DNA cytochrome c oxidase subunit I and cytochrome b region sequences as genetic markers, we analyzed population genetic diversity and structure from 437 individuals collected in 15 S. variegates populations located in different oilseed rape production areas in China. In addition, we estimated the demographic history using neutrality test and mismatch distribution analysis. Results : The high level of genetic diversity was detected among the mtDNA region sequences of S. variegates . The population structure analysis strongly suggested that three genetic and geographical regions occur with limited gene flow. The Mantel test showed that the genetic distance was greatly influenced by geographical distance. The demographic analyses showed that S. variegates experienced population fluctuation during the Pleistocene, which was likely to be related to the climatic changes. Conclusion : Overall, these results demonstrated that the strong population genetic structure of this beetle may attribute to the geographical barriers and subsequently adapt to the regional ecological conditions for the distribution of S. variegates in China. Keywords : Gene flow, Genetic differentiation, Haplotype, Oilseed rape, Population genetic pattern, Strongyllodes variegates


2020 ◽  
Author(s):  
Xiang Li ◽  
Minghui Zhao ◽  
Yujin Xu ◽  
Yan Li ◽  
Mulualem Tigabu ◽  
...  

Abstract Background Pinus koraiensis (commonly known as Korean pine), is a well-known conifer species in China with high economic, ornamental and ecological values. More than 50% of the P. koraiensis forests in the world are distributed in Northeast China, a region with abundant germplasm resources. However, these natural P. koraiensis populations are in danger of genetic erosion caused by continuous climate changes and frequent human activity. Little work has been conducted on the population genetic structure and genetic differentiation of P. koraiensis in China. Here, representative individuals from 16 natural P. koraiensis populations were sampled and genotyped, and polymorphic expressed sequence tag-simple sequence repeat (EST-SSR) markers were used to comprehensively evaluate genetic diversity, population structure and differentiation of P. koraiensis populations in China.ResultsA total of 480 samples from 16 populations were collected in the natural distribution area of P. koraiensis. Analysis of molecular variance (AMOVA) of the EST-SSR marker data showed that 33% of the total genetic variation was among populations and 67% was within populations. A high level of genetic diversity was found across P. koraiensis populations (average Na=10.33, Ne=2.514, He=0.521), and the highest levels of genetic diversity were found in Heihe (He=0.449), Zhanhe (He=0.413), Liangshui (He=0.370) and Tieli (He=0.414) populations. Moreover, pairwise Fst values reveled significant genetic differentiation among populations (mean Fst=0.177). Structure and Neighbor-joining (NJ) tree analyses and principal component analysis (PCA) revealed two genetic clusters: cluster 1 from Xiaoxinganling Mountains and cluster 2 from Changbaishan Mountains, which were consistent with the geographical distributions of the natural populations. ConclusionsThe findings provide new genetic information for future genome-wide association studies (GWAS), marker-assisted selection (MAS) and genomic selection (GS) in natural P. koraiensis breeding programs and can aid the development of conservation strategies for this valuable conifer species.


Sign in / Sign up

Export Citation Format

Share Document