Progressive brain structural abnormality in depression assessed with MR imaging by using causal network analysis

2021 ◽  
pp. 1-10
Author(s):  
Shaoqiang Han ◽  
Ruiping Zheng ◽  
Shuying Li ◽  
Liang Liu ◽  
Caihong Wang ◽  
...  

Abstract Background As a neuroprogressive illness, depression is accompanied by brain structural abnormality that extends to many brain regions. However, the progressive structural alteration pattern remains unknown. Methods To elaborate the progressive structural alteration of depression according to illness duration, we recruited 195 never-treated first-episode patients with depression and 130 healthy controls (HCs) undergoing T1-weighted MRI scans. Voxel-based morphometry method was adopted to measure gray matter volume (GMV) for each participant. Patients were first divided into three stages according to the length of illness duration, then we explored stage-specific GMV alterations and the causal effect relationship between them using causal structural covariance network (CaSCN) analysis. Results Overall, patients with depression presented stage-specific GMV alterations compared with HCs. Regions including the hippocampus, the thalamus and the ventral medial prefrontal cortex (vmPFC) presented GMV alteration at onset of illness. Then as the illness advanced, others regions began to present GMV alterations. These results suggested that GMV alteration originated from the hippocampus, the thalamus and vmPFC then expanded to other brain regions. The results of CaSCN analysis revealed that the hippocampus and the vmPFC corporately exerted causal effect on regions such as nucleus accumbens, the precuneus and the cerebellum. In addition, GMV alteration in the hippocampus was also potentially causally related to that in the dorsolateral frontal gyrus. Conclusions Consistent with the neuroprogressive hypothesis, our results reveal progressive morphological alteration originating from the vmPFC and the hippocampus and further elucidate possible details about disease progression of depression.

Author(s):  
Inês Carreira Figueiredo ◽  
Faith Borgan ◽  
Ofer Pasternak ◽  
Federico E. Turkheimer ◽  
Oliver D. Howes

AbstractWhite-matter abnormalities, including increases in extracellular free-water, are implicated in the pathophysiology of schizophrenia. Recent advances in diffusion magnetic resonance imaging (MRI) enable free-water levels to be indexed. However, the brain levels in patients with schizophrenia have not yet been systematically investigated. We aimed to meta-analyse white-matter free-water levels in patients with schizophrenia compared to healthy volunteers. We performed a literature search in EMBASE, MEDLINE, and PsycINFO databases. Diffusion MRI studies reporting free-water in patients with schizophrenia compared to healthy controls were included. We investigated the effect of demographic variables, illness duration, chlorpromazine equivalents of antipsychotic medication, type of scanner, and clinical symptoms severity on free-water measures. Ten studies, including five of first episode of psychosis have investigated free-water levels in schizophrenia, with significantly higher levels reported in whole-brain and specific brain regions (including corona radiata, internal capsule, superior and inferior longitudinal fasciculus, cingulum bundle, and corpus callosum). Six studies, including a total of 614 participants met the inclusion criteria for quantitative analysis. Whole-brain free-water levels were significantly higher in patients relative to healthy volunteers (Hedge’s g = 0.38, 95% confidence interval (CI) 0.07–0.69, p = 0.02). Sex moderated this effect, such that smaller effects were seen in samples with more females (z = −2.54, p < 0.05), but antipsychotic dose, illness duration and symptom severity did not. Patients with schizophrenia have increased free-water compared to healthy volunteers. Future studies are necessary to determine the pathological sources of increased free-water, and its relationship with illness duration and severity.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Erkan Alkan ◽  
Geoff Davies ◽  
Kathy Greenwood ◽  
Simon L. Evans

Abstract Impaired functional capacity is a core feature of schizophrenia and presents even in first-episode psychosis (FEP) patients. Impairments in daily functioning tend to persist despite antipsychotic therapy but their neural basis is less clear. Previous studies suggest that volume loss in frontal cortex might be an important contributor, but findings are inconsistent. We aimed to comprehensively investigate the brain structural correlates of functional capacity in FEP using MRI and a reliable objective measure of functioning [University of California, San Diego Performance-Based Skills Assessment (UPSA)]. In a sample of FEP (n = 39) and a well-matched control group (n = 21), we measured cortical thickness, gray matter volume, and white matter tract integrity (fractional anisotropy, FA) within brain regions implicated by previous work. The FEP group had thinner cortex in various frontal regions and fusiform, and reduced FA in inferior longitudinal fasciculus (ILF). In FEP, poorer functional capacity correlated with reduced superior frontal volume and lower FA in left ILF. Importantly, frontal brain volumes and integrity of the ILF were identified as the structural correlates of functional capacity in FEP, controlling for other relevant factors. These findings enhance mechanistic understanding of functional capacity deficits in schizophrenia by specifying the underlying neural correlates. In future, this could help inform intervention strategies.


2008 ◽  
Vol 6 (4) ◽  
pp. 147470490800600 ◽  
Author(s):  
Matthew Euler ◽  
Robert J. Thoma ◽  
Lauren Parks ◽  
Steven W. Gangestad ◽  
Ronald A. Yeo

Composite measures of fluctuating asymmetry (FA) of skeletal features are commonly used to estimate developmental instability (DI), the imprecise expression of developmental design due to perturbations during an individual's growth and maturation. Though many studies have detailed important behavioral correlates of FA, very little is known about its possible neuroanatomical correlates. In this study we obtained structural brain MRI scans from 20 adults and utilized voxel-based morphometry (VBM) to identify specific regions linked to FA. Greater FA predicted greater whole brain white matter volume, and a trend in the same direction was noted for whole brain gray matter volume. Greater FA was associated with significantly greater gray and white matter volumes in discrete brain regions, most prominently in the frontal lobes and in the right cerebral hemisphere. Developmental studies are needed to identify when FA-related brain differences emerge and to elucidate the specific neurobiological mechanisms leading to these differences.


2017 ◽  
Vol 41 (S1) ◽  
pp. S15-S15
Author(s):  
M. Lepage ◽  
M. Carolina ◽  
B. Michael ◽  
C. Mallar ◽  
J. Ridha ◽  
...  

Early persistent negative symptoms (ePNS) refer to the presence of potentially idiopathic or primary negative symptoms and have been observed following a first episode of psychosis (FEP). There is evidence for cortical changes associated with ePNS and given that a FEP often occurs during a period of ongoing brain development and maturation, neuroanatomical changes may have a specific age related component. The current study examined cortical thickness (CT), hippocampal/amygdala volume and shape as a function of clinical trajectories and age using longitudinal structural imaging in FEP. T1-MRI scans were acquired for early (n = 21), secondary (n = 30), non-(n = 44) PNS patients with a FEP, and controls (n = 44). Cortical thickness and amygdalar–hippocampal volumes and surface area (SA) metrics were extracted from three time points over a two-year period. Linear mixed models were applied to test for a main effect of group, and age group interactions. Relative to the other groups, ePNS patients showed cortical thinning over time in temporal regions and a thickening with age primarily in prefrontal areas. They also exhibited reduced left amygdalar and right hippocampal volumes. Morphometry revealed decreased surface area in ePNS compared to other groups in left central amygdala. The current study demonstrates that FEP patients with ePNS show significantly different CT trajectories with age. Increased CT may be indicative of disruptions in cortical maturation processes within higher-order brain regions. Amygdalar-hippocampal changes with age are also linked to ePNS with converging results from volumetric and morphometric analyses. Taken together, these results could represent dynamic endophenotypes setting these ePNS patients apart from their non-symptomatic peers.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2020 ◽  
Author(s):  
Avyarthana Dey ◽  
Kara Dempster ◽  
Michael Mackinley ◽  
Peter Jeon ◽  
Tushar Das ◽  
...  

Background:Network level dysconnectivity has been studied in positive and negative symptoms of schizophrenia. Conceptual disorganization (CD) is a symptom subtype which predicts impaired real-world functioning in psychosis. Systematic reviews have reported aberrant connectivity in formal thought disorder, a construct related to CD. However, no studies have investigated whole-brain functional correlates of CD in psychosis. We sought to investigate brain regions explaining the severity of CD in patients with first-episode psychosis (FEPs) compared with healthy controls (HCs).Methods:We computed whole-brain binarized degree centrality maps of 31 FEPs, 25 HCs and characterized the patterns of network connectivity in the two groups. In FEPs, we related these findings to the severity of CD. We also studied the effect of positive and negative symptoms on altered network connectivity.Results:Compared to HCs, reduced hubness of a right superior temporal gyrus (rSTG) cluster was observed in the FEPs. In patients exhibiting high CD, increased hubness of a medial superior parietal (mSPL) cluster was observed, compared to patients exhibiting low CD. These two regions were strongly correlated with CD scores but not with other symptom scores.Discussion:Our observations are congruent with previous findings of reduced but not increased hubness. We observed increased hubness of mSPL suggesting that cortical reorganization occurs to provide alternate routes for information transfer.Conclusion:These findings provide insight into the underlying neural processes mediating the presentation of symptoms in untreated FEP. A longitudinal tracking of the symptom course will be useful to assess the mechanisms underlying these compensatory changes.


2021 ◽  
Vol 11 (3) ◽  
pp. 374
Author(s):  
Tomoyo Morita ◽  
Minoru Asada ◽  
Eiichi Naito

Self-consciousness is a personality trait associated with an individual’s concern regarding observable (public) and unobservable (private) aspects of self. Prompted by previous functional magnetic resonance imaging (MRI) studies, we examined possible gray-matter expansions in emotion-related and default mode networks in individuals with higher public or private self-consciousness. One hundred healthy young adults answered the Japanese version of the Self-Consciousness Scale (SCS) questionnaire and underwent structural MRI. A voxel-based morphometry analysis revealed that individuals scoring higher on the public SCS showed expansions of gray matter in the emotion-related regions of the cingulate and insular cortices and in the default mode network of the precuneus and medial prefrontal cortex. In addition, these gray-matter expansions were particularly related to the trait of “concern about being evaluated by others”, which was one of the subfactors constituting public self-consciousness. Conversely, no relationship was observed between gray-matter volume in any brain regions and the private SCS scores. This is the first study showing that the personal trait of concern regarding public aspects of the self may cause long-term substantial structural changes in social brain networks.


2021 ◽  
pp. 089198872098891
Author(s):  
Regina Eun Young Kim ◽  
Robert Douglas Abbott ◽  
Soriul Kim ◽  
Robert Joseph Thomas ◽  
Chang-Ho Yun ◽  
...  

This study aimed to evaluate the effect of sleep duration on brain structures in the presence versus absence of sleep apnea in middle-aged and older individuals. The study investigated a population-based sample of 2,560 individuals, aged 49-80 years. The presence of sleep apnea and self-reported sleep duration were examined in relation to gray matter volume (GMV) in total and lobar brain regions. We identified ranges of sleep duration associated with maximal GMV using quadratic regression and bootstrap sampling. A significant quadratic association between sleep duration and GMV was observed in total and lobar brain regions of men with sleep apnea. In the fully adjusted model, optimal sleep durations associated with peak GMV between brain regions ranged from 6.7 to 7.0 hours. Shorter and longer sleep durations were associated with lower GMV in total and 4 sub-regions of the brain in men with sleep apnea.


2018 ◽  
Vol 11 (8) ◽  
pp. 678-687
Author(s):  
Liang Ma ◽  
Edmund T Rolls ◽  
Xiuqin Liu ◽  
Yuting Liu ◽  
Zeyu Jiao ◽  
...  

AbstractAnalysis linking directly genomics, neuroimaging phenotypes and clinical measurements is crucial for understanding psychiatric disorders, but remains rare. Here, we describe a multi-scale analysis using genome-wide SNPs, gene expression, grey matter volume (GMV), and the positive and negative syndrome scale scores (PANSS) to explore the etiology of schizophrenia. With 72 drug-naive schizophrenic first episode patients (FEPs) and 73 matched heathy controls, we identified 108 genes, from schizophrenia risk genes, that correlated significantly with GMV, which are highly co-expressed in the brain during development. Among these 108 candidates, 19 distinct genes were found associated with 16 brain regions referred to as hot clusters (HCs), primarily in the frontal cortex, sensory-motor regions and temporal and parietal regions. The patients were subtyped into three groups with distinguishable PANSS scores by the GMV of the identified HCs. Furthermore, we found that HCs with common GMV among patient groups are related to genes that mostly mapped to pathways relevant to neural signaling, which are associated with the risk for schizophrenia. Our results provide an integrated view of how genetic variants may affect brain structures that lead to distinct disease phenotypes. The method of multi-scale analysis that was described in this research, may help to advance the understanding of the etiology of schizophrenia.


2004 ◽  
Vol 184 (5) ◽  
pp. 409-415 ◽  
Author(s):  
J. Eric Jensen ◽  
Jodi Miller ◽  
Peter C. Williamson ◽  
Richard W J. Neufeld ◽  
Ravi S. Menon ◽  
...  

BackgroundMembrane phospholipid and high-energy abnormalities measured with phosphorus magnetic resonance spectroscopy (31P-MRS) have been reported in patients with schizophrenia in several brain regions.AimsUsing improved imaging techniques, previously inaccessible brain regions were examined in patients with first-episode schizophrenia and healthy volunteers with 4.0 T 31P-MRS.MethodBrain spectra were collected in vivo from 15 patients with first-episode schizophrenia and 15 healthy volunteers from 15 cm3 effective voxels in the thalamus, cerebellum, hippocampus, anterior/posterior cingulate, prefrontal cortex and parieto-occipital cortex.ResultsPeople with first-episode schizophrenia showed increased levels of glycerophosphocholine in the anterior cingulate. Inorganic phosphate, phosphocreatine and adenosine triphosphate concentrations were also increased in the anterior cingulate in this group.ConclusionsThe increased phosphodiester and high-energy phosphate levels in the anterior cingulate of brains of people with first-episode schizophrenia may indicate neural overactivity in this region during the early stages of the illness, resulting in increased excitotoxic neural membrane breakdown.


2011 ◽  
Vol 26 (S2) ◽  
pp. 960-960
Author(s):  
J.L. Villegas Martínez ◽  
J.A. Blanco Garrote ◽  
F. Uribe Ladrón de Cegama ◽  
B. Arribas Simón ◽  
G. Cabús Piñol

IntroductionDiffusion tensor imaging (DTI) is a magnetic resonance imaging technique that have increasingly being used for the non-invasive evaluation of brain white matter (WM) abnormalities. Several studies suggest that the normal integration of cerebral function may be compromised in schizophrenia. Abnormalities in WM tracts may be directly relevant for the neuropathology of schizophrenia.ObjetivesThe purpose of this review was to discuss recent DTI findings in schizophrenia and a methodologic analysis.MethodsThe literature search was performed with the search engine PubMed of the U.S. National Library of Medicine. Search strategy used was based on the Cochrane review technique, limited to the period between 1998 (first report on DTI and schizophrenia) and May 2010. And limited to ‘Title/Abstract’. The reference lists of these studies were used to identify additional studies.ResultsThere is a striking amount of heterogeneity in findings, probably by methodologic problems. Brain regions such as the cingulate bundle, corpus callosum, and regions within frontal and temporal WM have a proportionally larger number of positive findings across the studies. In addition, WM tracts as The superior longitudinal fasciculus, fronto-occipital longitudinal fasciculi, uncinate fasciculi, frontal longitudinal fasciculus and the arcuate fasciculus have also positive findings in patients with schizophrenia. Other brain structures as the cerebellar peduncles, the fornix, the hippocampus and parahippocampal gyrus, the thalamic and optic radiations have been evaluated and shown positive findings. However, these findings are not present in all studies. DTI abnormalities in first-episode patients are less robust than in chronic patients.ConclusionsRecent DTI findings further support the hypothesis of structural dysconnectivity in schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document