Effect of Herbicide and Manure Applications on Soil Chemistry and Growth of Fieldbeans (Phaseolus vulgaris)

Weed Science ◽  
1981 ◽  
Vol 29 (4) ◽  
pp. 508-512 ◽  
Author(s):  
Laura S. Quakenbush ◽  
Robert G. Wilson

The influence of manure and herbicide applications on weed-free fieldbeans (Phaseolus vulgarisL.) and root rot of fieldbeans was studied during 1978 and 1979 at Scottsbluff, Nebraska. Rates of cattle feedlot manure used were 0, 30000, 56000, 112000, or 168000 kg/ha. Preplant herbicide treatments used were alachlor [2-chloro-2′6′-diethyl-N-(methoxymethyl)acetanilide] at 3.4 kg/ha, EPTC (S-ethyl dipropylthiocarbamate) at 3.4 kg/ha, EPTC + trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) at 2.2 + 0.6 kg/ha, or dinoseb (2-sec-butyl-4,6-dinitrophenol) at 6.7 kg/ha. Manure rates of 56000 kg/ha or higher reduced fieldbean yields both years, but did not increase electrical conductivity or soil exchangeable sodium enough to explain these yield reductions. In 1978, but not in 1979, height and yield of weed-free fieldbeans were reduced by EPTC, EPTC + trifluralin, and alachlor treatments. A significant interaction between manure and herbicide treatments was not detected and none of the treatments increased the severity of root rot in either year.

2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Hammad Abdelwanees Ketta ◽  
Omar Abd El-Raouf Hewedy

Abstract Background Root rot pathogens reported to cause considerable losses in both the quality and productivity of common bean (Phaseolus vulgaris L.) and pea (Pisum sativum L.). It is an aggressive crop disease with detriment economic influence caused by Fusarium solani and Rhizoctonia solani among other soil-borne fungal pathogens. Destructive plant diseases such as root rot have been managed in the last decades using synthetic pesticides. Main body Seeking of economical and eco-friendly alternatives to combat aggressive soil-borne fungal pathogens that cause significant yield losses is urgently needed. Trichoderma emerged as promising antagonist that inhibits pathogens including those inducing root rot disease. Detailed studies for managing common bean and pea root rot disease using different Trichoderma species (T. harzianum, T. hamatum, T. viride, T. koningii, T. asperellum, T. atroviridae, T. lignorum, T. virens, T. longibrachiatum, T. cerinum, and T. album) were reported both in vitro and in vivo with promotion of plant growth and induction of systemic defense. The wide scale application of selected metabolites produced by Trichoderma spp. to induce host resistance and/or to promote crop yield, may represent a powerful tool for the implementation of integrated pest management strategies. Conclusions Biological management of common bean and pea root rot-inducing pathogens using various species of the Trichoderma fungus might have taken place during the recent years. Trichoderma species and their secondary metabolites are useful in the development of protection against root rot to bestow high-yielding common bean and pea crops.


1973 ◽  
Vol 15 (2) ◽  
pp. 123-125
Author(s):  
V. K. Gupta ◽  
G. S. Saharan

Soil Research ◽  
1981 ◽  
Vol 19 (3) ◽  
pp. 361 ◽  
Author(s):  
D Subhashini ◽  
BD Kaushik

Algal growth resulted in significant reductions in pH, electrical conductivity, exchangeable sodium and in hydraulic conductivity and aggregation status of the soil. There was a significant increase in the total nitrogen content of the soil due to algal growth. Two out of the three inoculated species of algae could establish in the pots along with the indigenous algal flora. Combination of gypsum and algal application were found to have appreciable reclamative properties, and the possibility of using algae as a biological input for the reclamation of sodic soils has been indicated.


1977 ◽  
Vol 89 (1) ◽  
pp. 235-238 ◽  
Author(s):  
P. E. Russell ◽  
A. E. A. Mussa

SummaryTwo systemic fungicides, benomyl and thiabendazole, were more active than the non-systemic fungicide Drazoxolon in inhibiting fungal growth in vitro. A similar pattern was obtained in glasshouse trials with benomyl and thiabendazole giving adequate protection at low concentrations while Drazoxolon was ineffective unless applied at 50% the commercial product concentration. A field trial using thiabendazole, Drazoxolon and a mixture of benomyl and thiram confirmed the glasshouse results.Some phytotoxicity was noticed with high concentrations of both benomyl and thiabendazole, but satisfactory disease control was achieved using fungicide concentrations which did not induce phytotoxicity.


Irriga ◽  
2007 ◽  
Vol 12 (2) ◽  
pp. 168-176 ◽  
Author(s):  
Egeiza Moreira Leite ◽  
Lourival Ferreira Cavalcante ◽  
Adriana Araújo Diniz ◽  
Rivaldo Vital dos Santos ◽  
Gibran Da Silva Alves ◽  
...  

CORREÇÃO DA SODICIDADE DE DOIS SOLOS IRRIGADOS EM RESPOSTA À APLICAÇÃO DE GESSO AGRÍCOLA  Egeiza Moreira Leite1; Lourival Ferreira Cavalcante1; Adriana Araujo Diniz1; Rivaldo Vital dos Santos2; Gibran da Silva Alves3; Italo Herbert Lucena Cavalcante41Departamento de Solos e Engenharia Rural, Universidade Federal da Paraíba, Areia, PB, [email protected] de Engenharia Florestal, Universidade Federal de Campina Grande, Patos, PB3Departamento de Fitotecnia, Universidade Federal da Paraíba, Areia, PB4Departamento de Produção Vegetal, Universidade Estadual Paulista, Jaboticabal, SP  1 RESUMO             Uma das limitações das áreas irrigadas, nas regiões áridas e semi-áridas, ao sistema produtivo é a degradação química e física dos solos pela salinidade e sodicidade. Com o objetivo de avaliar o efeito do gesso sobre a condutividade elétrica, pH, percentagem de sódio trocável, teores de cálcio, magnésio, sódio do extrato de saturação e de sódio trocável de dois solos salino-sódicos: um do Perímetro Irrigado Engenheiro Arco Verde no município de Condado-PB e o outro do Perímetro Irrigado de São Gonçalo em Sousa-PB, conduziu-se um experimento em abrigo protegido do Departamento de Solos e Engenharia Rural do CCA/UFPB, Areia, PB. O delineamento foi inteiramente casualizado em esquema fatorial 2x5 referente a dois solos e cinco doses de gesso equivalentes a 0; 3,2; 6,3; 9,4 e 12,5 g kg-1 de cada solo. Pelos resultados a incorporação do gesso exerceu efeito positivo sobre a redução da salinidade e da sodicidade dos solos. Os valores da condutividade elétrica, percentagem de sódio trocável, pH e os teores de sódio solúvel e trocável em relação aos que os solos possuíam antes da aplicação dos tratamentos, foram sensivelmente reduzidos e os de cálcio e magnésio incrementados com a incorporação do gesso em ambos os solos. UNITERMOS: salinidade, sódio trocável, recuperação de solo.  LEITE, E. M.; CAVALCANTE, L. F.; DINIZ, A. A.; SANTOS, R. V.; ALVES, G. S.; CAVALCANTE, I. H. L. SODICITY CORRECTION OF TWO IRRIGATED SOILS IN RESPONSE TO APPLICATION OF AGRICULTURAL GYPSUM  2 ABSTRACT             The chemical and physical degradation of the soils by salinity and sodicity problems constitutes a serious obstacle in productive irrigated areas in arid and semi-arid regions. An experiment was carried out in green house at the Soil and Rural Engeneering Department in the Centro de Ciências Agrárias of the Universidade Federal da Paraíba, Areia, Brazil, in order to evaluate the effect of gypsum on electrical conductivity, pH, exchangeable sodium percentage, sodium, calcium and magnesium content in saturation extract and exchangeable sodium of two saline-sodic soils: one from irrigated Perimeter Engenheiro Arco Verde in the municipality of Condado and another from irrigated Perimeter of São Gonçalo, in the municipality of Sousa,  both in Paraiba State,  Brazil.  The experiment factorial design 2 x 5 referred to two soils and five gypsum levels equivalent to 0; 3.2; 6.3; 9.4 and 12.5 gkg-1 for each soil. The gypsum application had positive effects on salinity and sodicity reduction. The valued for electrical conductivity, exchangeable sodium percentage, pH and contents of soluble and exchangeable sodium in relation to soil data before the application of gypsum treatments in both soils  decreased. KEYWORDS: salinity, exchangeable sodium, soil reclamation


1969 ◽  
Vol 41 (1) ◽  
pp. 25-34
Author(s):  
Juan A. Bonnet ◽  
Eduardo J. Brenes

1. The area of soils surveyed in Lajas Valley was 24,656 acres. 2. The soils were classified into normal, saline, saline-alkali, and non- saline-alkali at depths of 0 to 8, 8 to 24, 24 to 48, and 48 to 72 inches, respectively. 3. A large percentage of normal soils was found in the upper soil layer and of saline-alkali soils in the lower layers. 4. Normal soils occupied about 86 percent of the surface area to a depth of 8 inches and about 63 percent at a depth of 8 to 24 inches. 5. Soils with a salinity problem increased from 9 percent at a depth of 8 inches to 28.3, 58.8 and 68.5 percent, respectively, at depths of 8 to 24, 24 to 48, and 48 to 72 inches. 6. The soils with a salinity problem were largely of the saline-alkali class. 7. In four soil-profile samples taken from Lajas Valley, the saturation percentage varied from 58 to 191, the electrical conductivity from 0.8 to 28.4 millimhos per centimeter, the exchangeable-sodium percentage from 2.2 to 46.0, the soil pH from 8.1 to 8.9, the content of gypsum from 0 to 21.9 tons per acre-foot, the gypsum requirement from 0 to 23.8 tons per acre-foot, and the hydraulic conductivity from less than 0.005 to 6.24 inches of water per hour. Higher gypsum contents were found in the deep subsoil layers of two soils (profiles 1 and 4). Amounts of gypsum varying from 9.9 to 20.3 tons per acre-foot of depth, are required for the reclamation of the surface layers of these two profiles. In general, the hydraulic- conductivity values show that the soil-surface layers are more permeable than the subsoil layers. 8. The procedure and methods used in this paper were found to be accurate, simple, rapid, and practical. They are recommended for the coordination of data related to the classification and reclamation of soils affected by salinity problems in the different countries of the world.


1995 ◽  
Vol 2 (4) ◽  
pp. 398 ◽  
Author(s):  
J. C. Noble ◽  
D. J. Tongway ◽  
M. M. Roper ◽  
W. G. Whitford

The effects of prescribed fires on nutrient pools, soil micro-organisms, and vegetation patch dynamics were studied in three semi-arid mallee shrublands in western New South Wales. Repeated sampling of surface soil strata (0–2 and 2–4 cm) was undertaken at strategic times (immediately before and after the fire, after opening autumn rain, mid-season in the winter, and at the end of the spring) in five microsites (inner, middle and outer mallee litter zones, bare soil, and Triodia hummock). These samples were later analysed for pH, electrical conductivity, organic carbon and available nitrogen. The effect of fire on soil micro-organisms in these microsites was also examined by measuring nitrogenase activity and enumerating soil Acari. Carbon and nitrogen levels were consistently higher in the inner mallee microsites whereas bare soil sites provided the lowest values. Significant microsite x soil depth interactions were recorded in two shrubland sites while highly significant (P < 0.001) depth x sampling time interactions were recorded in three sites. The most sensitive soil parameter with respect to microsite was electrical conductivity, particularly in the surface 0–2 cm stratum. Highest values were again recorded from the inner mallee microsites and the lowest from bare soil sites. Nitrogenase activity was highest in soil samples associated with mallee litter and, where litter was removed by fire, activity decreased markedly except in the bare soil samples where activity was higher in the burnt samples. Soil microarthropod populations also declined notably following fire. Mites from the Prostigmata greatly outnumbered those from other suborders, a total of 12 families (15 genera) being enumerated in control sites compared with three families (three genera) only of Cryptostigmata. Nonetheless the most abundant mites were cryptostigmatids (Aphelacarus spp.) found in unburnt hummocks beneath Triodia plants. The ecological and management implications of these spatial and temporal fluxes in soil chemistry and soil biology are discussed in relation to their effects on landscape processes, particularly water and nutrient redistribution.


1993 ◽  
Vol 73 (1) ◽  
pp. 365-367 ◽  
Author(s):  
J. C. Tu ◽  
S. J. Park

A bean (Phaseolus vulgaris) line, A - 300, resistant to Rhizoctonia solani and Fusarium oxysporum was introduced into Ontario from Colombia. The results of tests conducted in a root-rot nursery, in a greenhouse and in a growth room showed that this bean line is resistant to Fusarium solani f. sp. phaseoli and Pythium ultimum. Key words: Bean, Phaseolus vulgaris, root rot resistance


Sign in / Sign up

Export Citation Format

Share Document