Weed Seedbank Response to Tillage, Herbicides, and Crop Rotation Sequence

Weed Science ◽  
1992 ◽  
Vol 40 (4) ◽  
pp. 654-659 ◽  
Author(s):  
Daniel A. Ball

Changes in the weed seedbank due to crop production practices are an important determinant of subsequent weed problems. Research was conducted to evaluate effects of primary tillage (moldboard plowing and chisel plowing), secondary tillage (row cultivation), and herbicides on weed species changes in the soil seedbank in three irrigated row crop rotational sequences over a 3-yr period. The cropping sequences consisted of continuous corn for 3 yr, continuous pinto beans for 3 yr, or sugarbeets for 2 yr followed by corn in the third year. Cropping sequence was the most dominant factor influencing species composition in the seedbank. This was partly due to herbicide use in each cropping sequence producing a shift in the weed seedbank in favor of species less susceptible to applied herbicides. A comparison between moldboard and chisel plowing indicated that weed seed of predominant species were more prevalent near the soil surface after chisel plowing. The number of predominant annual weed seed over the 3-yr period increased more rapidly in the seedbank after chisel plowing compared to moldboard plowing unless effective weed control could be maintained to produce a decline in seedbank number. In this case, seedbank decline was generally more rapid after moldboard plowing. Row cultivation generally reduced seedbanks of most species compared to uncultivated plots in the pinto bean and sugarbeet sequences. A simple model was developed to validate the observation that rate of change in the weed seedbank is influenced by type of tillage and weed control effectiveness.

Weed Science ◽  
1999 ◽  
Vol 47 (2) ◽  
pp. 175-183 ◽  
Author(s):  
George O. Kegode ◽  
Frank Forcella ◽  
Sharon Clay

Approaches to crop production that successfully reduce weed seed production can benefit farming systems by reducing management inputs and costs. A 5-yr rotation study was conducted in order to determine the effects that interactions between crop rotation, tillage, and amount of herbicide and fertilizer (management inputs) have on annual grass and broad-leaved weed seed production and fecundity. There were 10 crop rotation and tillage system combinations and three levels of management inputs (high, medium, and low). Green and yellow foxtail were the major weed species, and together they yielded between 76 and 93% of collected weed seeds. From 1990 to 1994, average grass weed seed productions were 7.3 by 103, 3.7 by 1036.1 by 103and 5.7 by 103seeds m−-2, whereas average broad-leaved weed seed productions were 0.4 by 103, 0.4 by 103, 1.4 by 103, and 0.4 by 103seeds m−-2in crop rotations using conventional tillage (moldboard plow), conservation tillage, no tillage, and ridge tillage, respectively. Crop rotations using conventional or ridge tillage consistently produced more grass and broad-leaved weed seeds, especially in low-input plots. There was little difference in weed seed production among input levels for crop rotations using conservation tillage. Comparing rotations that began and ended with a corn crop revealed that by increasing crop diversity within a rotation while simultaneously reducing the amount of tillage, significantly fewer grass and broad-leaved weed seeds were produced. Among the rotations, grass and broad-leaved weed fecundity were highly variable, but fecundity declined from 1990 to 1994 within each rotation, with a concomitant increase in grass and broad-leaved weed density over the same period. Crop rotation in combination with reduced tillage is an effective way of limiting grass and broad-leaved weed seed production, regardless of the level of management input applied.


1992 ◽  
Vol 10 (1) ◽  
pp. 43-45 ◽  
Author(s):  
W.A. Skroch ◽  
M.A. Powell ◽  
T.E. Bilderback ◽  
P.H. Henry

Abstract Five organic mulches (pine bark, hardwood bark, cedar chips, longleaf pine needles, shortleaf pine needles), used alone or in combination with two inorganic mulches (black polyethylene, woven polypropylene), were evaluated over two years for weed control, durability, aesthetic value, and influence upon soil temperature. Organic mulches reduced total weed counts by 50% compared to control plots. and underlaying organic mulches with polyethylene resulted in complete control. Polypropylene, used in combination with organic mulch, was ineffective in controlling perennial weed species. Pine bark was the most durable organic mulch, requiring the least replenishment (70% initial volume) after 630 days. Durability of organic mulches increased when underlaid with polyethylene. Longleaf pine needles were rated most attractive, and underlying organic materials with either polyethylene or polypropylene enhanced appearance. Organic mulches reduced maximum daily temperatures at the soil surface by 2.2–3.3°C (4–6°F) and increased minimum daily temperatures by 1.1–2.2°C (2–4°F). However, the type of organic mulch did not affect temperatures at the soil surface.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sarah Striegel ◽  
Maxwel C. Oliveira ◽  
Ryan P. DeWerff ◽  
David E. Stoltenberg ◽  
Shawn P. Conley ◽  
...  

Roundup Ready 2 Xtend® [glyphosate- and dicamba-resistant (DR)] soybean is a novel trait option for postemergence (POST) control of herbicide-resistant broadleaf weeds in soybean. With increased use of labeled dicamba products POST in DR soybean and recommendations to include a soil-residual herbicide POST (e.g., layered residual approach), research on how combinations of these approaches influence weed control, weed seed production, and soybean grain yield is warranted. The objective of this research was to evaluate the effects of (1) flumioxazin applied preemergence (PRE) followed by (fb) dicamba plus glyphosate applied POST at different crop developmental stages and (2) acetochlor POST as a layered residual approach on weed control, weed seed production, and soybean yield to determine the optimal POST timing in DR soybean. A field study was conducted in Wisconsin at three sites in 2018 and four sites in 2019 to evaluate flumioxazin (43.4 g ai ha−1, WDG 51%) PRE fb dicamba (560 g ae ha−1, SL) plus glyphosate (1,101 g ae ha−1, SL) POST in DR soybean at three stages: early-POST (EPOST, V1-V2), mid-POST (MPOST, V3-V4), and late-POST (LPOST, V5-V6/R1) with or without a soil-residual herbicide POST (acetochlor, 1,262 g ai ha−1, ME). Weed community composition was site-specific; difficult-to-control broadleaf species included giant ragweed (Ambrosia trifida L.) and waterhemp [Amaranthus tuberculatus (Moq.) J.D. Sauer]. Dicamba plus glyphosate applied MPOST and LPOST provided greater control, weed biomass reduction, and density reduction of giant ragweed and waterhemp when compared with EPOST treatments. Giant ragweed and waterhemp had not reached 100% cumulative emergence at EPOST, and plants that emerged after EPOST produced seed. There was some benefit to including acetochlor as a layered residual at EPOST as indicated by a residual by POST timing interaction for waterhemp density reduction. Complete waterhemp control was not attained at one site-year. For remaining site-years, dicamba plus glyphosate applied MPOST (V3-V4) provided season-long weed control, reduced weed seed production, and optimized soybean grain yield compared with other POST treatments. Results highlight the importance of timely POST applications and suggest utilization of a POST layered residual needs to be timed appropriately for the window of active weed species emergence.


2021 ◽  
Vol 9 (7) ◽  
pp. 407-421
Author(s):  
Nawal Al-Hajaj

In this study, we reviewed weed seed bank dynamic and main agriculture operations to come up with the weed seed management modeling designed to increase crop productivity by removing weed competition. Weed contributing with 10% loss of total global grain production. Weed seed bank regulate by five demographic processes seedling recruitment and survival, seed production, dispersal and seed survival in soil. The main agriculture operations that interference with weed seed bank are crop rotation and primary tillage. Tillage systems affect weed emergence, management, and seed production; therefore, changing tillage practices changes the composition, vertical distribution, and density of weed seed bank in agricultural soils. Weed species vary in their response to various crop rotations, due to the variability of weed-crop competition in their relative capacity to capture growth–limiting resources. Crop rotations affect weed emergence, management, composition, and density of weed seed bank. Finally, the study suggests elevating crop competitiveness against weeds, through a combination of crop rotation and reduce_ zero tillage, has strong potential to reduce weed-induced yield losses in crop.


2013 ◽  
Vol 27 (3) ◽  
pp. 431-436 ◽  
Author(s):  
Michael Walsh ◽  
Peter Newman ◽  
Stephen Powles

The widespread evolution of multiple herbicide resistance in the most serious annual weeds infesting Australian cropping fields has forced the development of alternative, non-chemical weed control strategies, especially new techniques at grain harvest. Harvest weed seed control (HWSC) systems target weed seed during commercial grain harvest operations and act to minimize fresh seed inputs to the seedbank. These systems exploit two key biological weaknesses of targeted annual weed species: seed retention at maturity and a short-lived seedbank. HWSC systems, including chaff carts, narrow windrow burning, bale direct, and the Harrington Seed Destructor, target the weed seed bearing chaff material during commercial grain harvest. The destruction of these weed seeds at or after grain harvest facilitates weed seedbank decline, and when combined with conventional herbicide use, can drive weed populations to very low levels. Very low weed populations are key to sustainability of weed control practices. Here we introduce HWSC as a new paradigm for global agriculture and discuss how these techniques have aided Australian grain cropping and their potential utility in global agriculture.


2017 ◽  
Vol 31 (3) ◽  
pp. 341-347 ◽  
Author(s):  
Michael Walsh ◽  
Jackie Ouzman ◽  
Peter Newman ◽  
Stephen Powles ◽  
Rick Llewellyn

HWSC systems that target weed seed production during harvest have been in use in Australian crop production systems for over 30 years. Until recently, though, grower adoption of these systems has been relatively low. It is now apparent with the introduction of a range of new weed seed targeting systems that there is renewed grower interest in the use of this approach to weed control. With the aim of determining the current adoption and use of HWSC systems, 600 crop producers from throughout Australia’s cropping regions were interviewed on their adoption and use of these systems. This survey established that 43% of Australian growers are now routinely using HWSC to target weed seed production during grain harvest. The adoption of narrow-windrow burning (30%) was considerably greater than the other currently available techniques of chaff tramlining (7%), chaff carts (3%), bale-direct system (3%), and the Harrington Seed Destructor (HSD) (<1%). When growers were asked about their future use of these systems 82% indicated that they would be using some form of HWSC within five years. Grower preferences for future HWSC use were primarily for either narrow-windrow burning (42%) or the HSD (29%). This very high level of current and potential HWSC adoption signifies that HWSC is now considered an established weed control practice by Australian growers.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 511-517 ◽  
Author(s):  
Daniel A. Ball ◽  
Stephen D. Miller

Research was conducted to evaluate the effects of primary tillage (moldboard plowing and chisel plowing), secondary tillage (row cultivation), and herbicides on weed species changes in the soil seed bank in three irrigated row cropping sequences over a 3-yr period. The cropping sequences consisted of continuous corn for 3 yr (CN), continuous pinto beans for 3 yr (PB), and sugarbeets for 2 yr followed by corn in the third year (SB). A comparison between moldboard and chisel plowing indicated that weed seed were more prevalent near the soil surface after chisel plowing. The density of certain annual weed seed over the 3-yr period increased more rapidly in the seed bank after chisel plowing compared to moldboard plowing. Species exhibiting the most pronounced increase included hairy nightshade and stinkgrass in the PB cropping sequence and redroot pigweed and common lambsquarters in the SB sequence. Conversely, kochia seed density in the SB sequence decreased more rapidly in chisel-plowed plots. Row cultivation generally reduced seed bank densities of most species compared to uncultivated plots. Herbicide use in each cropping sequence produced a shift in the weed seed bank in favor of species less susceptible to applied herbicides. In particular, seed of hairy nightshade became prevalent in the PB cropping sequence, and seed of kochia, redroot pigweed, and common lambsquarters became prevalent in the SB sequence.


Weed Science ◽  
1997 ◽  
Vol 45 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Douglas D. Buhler ◽  
Robert G. Hartzler ◽  
Frank Forcella

The species composition and density of weed seed in the soil vary greatly and are closely linked to the cropping history of the land. Altering tillage practices changes weed seed depth in the soil, which plays a role in weed species shifts and affects efficacy of control practices. Crop rotation and weed control practices also affect the weed seedbank. Information on the influence of cropping practices on the weed seedbank should be a useful tool for integrated weed management. Decision aid models use information on the weed seedbank to estimate weed populations, crop yield loss, and recommend weed control tactics. Understanding the light requirements of weed seed may provide new approaches to weed management. Improving and applying our understanding of weed seedbank dynamics is essential to developing improved weed management systems. The principles of plant ecology must be integrated with the science of weed management to develop strategies that take advantage of basic plant responses in weed management systems for agronomic crops.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1042D-1042
Author(s):  
Randy Smith ◽  
Darin Lickfeldt ◽  
Dan Loughner ◽  
Mike Melichar ◽  
James Breuninger

In 2003 and 2004, a new herbicide containing three active ingredients was evaluated for efficacy on important weed species and the tolerance of popular ornamental plant species. Currently available ornamental herbicides differ greatly in the weeds they control and tolerance of ornamental plants grown in production nurseries. This new granular product, trade name Showcase, also known by its experimental number, GF-1162, contains 2% trifluralin, 0.25% isoxaben, and 0.25% oxyfluorfen. With preemergent applications applied to pots artificially infested with weed seed, GF-1162 demonstrated exceptional control of many difficult to control species, such as spurge, groundsel, bittercress, oxalis, and crabgrass. When applied preemergence at 150 lb/acre, GF-1162 was as efficacious as current standards. At 200 lb/acre, weed control was exceptional, exceeding all products included in the trials. Ornamental tolerance to GF-1162 was comparable to that of Snapshot TG, with the exception of whorled plants. On whorled plants, such as daylily and hosta, where granular products can be retained on leaf surfaces, products containing oxyfluorfen must be applied with special precautions to immediately shake or wash granules from leaf surfaces. Even when whorled plants were injured by GF-1162, they did eventually recover. GF-1162 received a federal registration in 2004 and state registrations may be complete as early as Spring 2005, at which time this new herbicide would be made available to ornamental nurseries and lawn care companies as an alternative to current herbicide options.


2016 ◽  
Vol 13 (2) ◽  
pp. 221-228 ◽  
Author(s):  
MM Hossain ◽  
M Begum

The seed bank is the resting place of weed seeds and is an important component of the life cycle of weeds. Seed banks are the sole source of future weed populations of the weed species both annuals and perennials that reproduce only by seeds. For this reason, understanding fate of seeds in the seed bank can be an important component of overall weed control. When weed seeds enter the seed bank, several factors influence the duration for which seeds persist. Seeds can sense the surrounding environment in the seed bank and use these stimuli to become dormant or initiate germination. Soil and crop management practices can directly influence the environment of seeds in the soil weed seed bank and can thus be used to manage seed longevity and germination behavior of weed seeds.J. Bangladesh Agril. Univ. 13(2): 221-228, December 2015


Sign in / Sign up

Export Citation Format

Share Document