Mesozoic mammals and early mammalian brain diversity

2003 ◽  
Vol 26 (5) ◽  
pp. 556-557 ◽  
Author(s):  
Emmanuel Gilissen ◽  
Thierry Smith

Fossil remains witness the relationship between the appearance of the middle ear and the expansion of the brain in early mammals. Nevertheless, the lack of detachment of ear ossicles in the mammaliaform Morganucodon, despite brain enlargement, points to other factors that triggered brain expansion in early mammals. Moreover, brain expansion in some early mammalian groups seems to have favored brain regions other than the cortex.

Author(s):  
Sarah F. Beul ◽  
Alexandros Goulas ◽  
Claus C. Hilgetag

AbstractStructural connections between cortical areas form an intricate network with a high degree of specificity. Many aspects of this complex network organization in the adult mammalian cortex are captured by an architectonic type principle, which relates structural connections to the architectonic differentiation of brain regions. In particular, the laminar patterns of projection origins are a prominent feature of structural connections that varies in a graded manner with the relative architectonic differentiation of connected areas in the adult brain. Here we show that the architectonic type principle is already apparent for the laminar origins of cortico-cortical projections in the immature cortex of the macaque monkey. We find that prenatal and neonatal laminar patterns correlate with cortical architectonic differentiation, and that the relation of laminar patterns to architectonic differences between connected areas is not substantially altered by the complete loss of visual input. Moreover, we find that the degree of change in laminar patterns that projections undergo during development varies in proportion to the relative architectonic differentiation of the connected areas. Hence, it appears that initial biases in laminar projection patterns become progressively strengthened by later developmental processes. These findings suggest that early neurogenetic processes during the formation of the brain are sufficient to establish the characteristic laminar projection patterns. This conclusion is in line with previously suggested mechanistic explanations underlying the emergence of the architectonic type principle and provides further constraints for exploring the fundamental factors that shape structural connectivity in the mammalian brain.


2019 ◽  
Vol 69 (6) ◽  
pp. 589-611
Author(s):  
Elissa C Kranzler ◽  
Ralf Schmälzle ◽  
Rui Pei ◽  
Robert C Hornik ◽  
Emily B Falk

Abstract Campaign success is contingent on adequate exposure; however, exposure opportunities (e.g., ad reach/frequency) are imperfect predictors of message recall. We hypothesized that the exposure-recall relationship would be contingent on message processing. We tested moderation hypotheses using 3 data sets pertinent to “The Real Cost” anti-smoking campaign: past 30-day ad recall from a rolling national survey of adolescents aged 13–17 (n = 5,110); ad-specific target rating points (TRPs), measuring ad reach and frequency; and ad-elicited response in brain regions implicated in social processing and memory encoding, from a separate adolescent sample aged 14–17 (n = 40). Average ad-level brain activation in these regions moderates the relationship between national TRPs and large-scale recall (p < .001), such that the positive exposure-recall relationship is more strongly observed for ads that elicit high levels of social processing and memory encoding in the brain. Findings advance communication theory by demonstrating conditional exposure effects, contingent on social and memory processes in the brain.


2012 ◽  
Vol 44 (20) ◽  
pp. 992-1002 ◽  
Author(s):  
Brian J. Nieman ◽  
Marissa C. Blank ◽  
Brian B. Roman ◽  
R. Mark Henkelman ◽  
Kathleen J. Millen

The mammalian brain and skull develop concurrently in a coordinated manner, consistently producing a brain and skull that fit tightly together. It is common that abnormalities in one are associated with related abnormalities in the other. However, this is not always the case. A complete characterization of the relationship between brain and skull phenotypes is necessary to understand the mechanisms that cause them to be coordinated or divergent and to provide perspective on the potential diagnostic or prognostic significance of brain and skull phenotypes. We demonstrate the combined use of magnetic resonance imaging and microcomputed tomography for analysis of brain and skull phenotypes in the mouse. Co-registration of brain and skull images allows comparison of the relationship between phenotypes in the brain and those in the skull. We observe a close fit between the brain and skull of two genetic mouse models that both show abnormal brain and skull phenotypes. Application of these three-dimensional image analyses in a broader range of mouse mutants will provide a map of the relationships between brain and skull phenotypes generally and allow characterization of patterns of similarities and differences.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rebecca J. Williams ◽  
M. Ethan MacDonald ◽  
Erin L. Mazerolle ◽  
G. Bruce Pike

Elucidating the brain regions and networks associated with cognitive processes has been the mainstay of task-based fMRI, under the assumption that BOLD signals are uncompromised by vascular function. This is despite the plethora of research highlighting BOLD modulations due to vascular changes induced by disease, drugs, and aging. On the other hand, BOLD fMRI-based assessment of cerebrovascular reactivity (CVR) is often used as an indicator of the brain's vascular health and has been shown to be strongly associated with cognitive function. This review paper considers the relationship between BOLD-based assessments of CVR, cognition and task-based fMRI. How the BOLD response reflects both CVR and neural activity, and how findings of altered CVR in disease and in normal physiology are associated with cognition and BOLD signal changes are discussed. These are pertinent considerations for fMRI applications aiming to understand the biological basis of cognition. Therefore, a discussion of how the acquisition of BOLD-based CVR can enhance our ability to map human brain function, with limitations and potential future directions, is presented.


2021 ◽  
Author(s):  
Victor Nozais ◽  
Stephanie Forkel ◽  
Chris Foulon ◽  
Laurent Petit ◽  
Michel Thiebaut de Schotten

Abstract In recent years, the field of functional neuroimaging has moved from a pure localisationist approach of isolated functional brain regions to a more integrated view of those regions within functional networks. The methods used to investigate such networks, however, rely on local signals in grey matter and are limited in identifying anatomical circuitries supporting the interaction between brain regions. Mapping the brain circuits mediating the functional signal between brain regions would propel forward our understanding of the brain’s functional signatures and dysfunctions. We developed a novel method to unravel the relationship between brain circuits and functions: The Functionnectome. The Functionectome combines the functional signal from fMRI with the anatomy of white matter brain circuits to unlock and chart the first maps of functional white matter. To showcase the versatility of this new method, we provide the first functional white matter maps revealing the joint contribution of connected areas to motor, working memory, and language functions. The Functionnectome comes with an open source companion software and opens new avenues into studying functional networks by applying the method to already existing dataset and beyond task fMRI.


2021 ◽  
pp. 118-142
Author(s):  
Kim E. Ruyle

“The Neuroscience of Learning Agility” explores the relationship between neurobiology and learning agility. It provides an overview of the organization of the brain, focusing on the roles of the limbic system and the prefrontal cortex and how these particular brain regions relate to personality, executive function, and the metacompetencies of emotional intelligence and learning agility. The neuroscience of learning is discussed, including the brain’s attention networks, neuroplasticity, and biological underpinnings of memory. An argument is posited that the brain’s perceptions of threats directly impacts one’s personality and, by extension, influences one’s level of learning agility. The chapter concludes by providing neuroscience-based suggestions for developing learning agility.


Mind Shift ◽  
2021 ◽  
pp. 46-60
Author(s):  
John Parrington

This chapter investigates the relationship between the individual and society, which has been hotly disputed among philosophers and politicians through the ages. Recent studies have questioned the idea that human beings are naturally solitary individuals. Instead, they suggest that socialising with others is so central to our species that rejection is registered in the same brain regions that respond to physical pain. Other studies have undermined the idea that human beings are inherently selfish, indicating instead that altruistic acts trigger activity in the ‘reward’ region of the brain that is stimulated when a person experiences pleasure. Studies like these raise the question of how the human brain became so attuned to social cues in this way. Here there are two issues to consider. One is evidence that primates in general have evolved to be highly sensitive to social interactions with other members of their species, and this has been accompanied by enhanced brain growth in order to handle these more sophisticated interactions. Yet while social interaction may be hardwired into our brains because of evolutionary changes in our primate ancestors, some features of our strong tendency towards social interaction may be specifically human. The chapter then looks at Russian psychologist Lev Vygotsky’s novel ideas about human consciousness.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qiuping Cheng ◽  
Xue Wen ◽  
Guozhen Ye ◽  
Yanchi Liu ◽  
Yilong Kong ◽  
...  

AbstractMorality judgment usually refers to the evaluation of moral behavior`s ability to affect others` interests and welfare, while moral aesthetic judgment often implies the appraisal of moral behavior's capability to provide aesthetic pleasure. Both are based on the behavioral understanding. To our knowledge, no study has directly compared the brain activity of these two types of judgments. The present study recorded and analyzed brain activity involved in the morality and moral aesthetic judgments to reveal whether these two types of judgments differ in their neural underpinnings. Results reveled that morality judgment activated the frontal, parietal and occipital cortex previously reported for motor representations of behavior. Evaluation of goodness and badness showed similar patterns of activation in these brain regions. In contrast, moral aesthetic judgment elicited specific activations in the frontal, parietal and temporal cortex proved to be involved in the behavioral intentions and emotions. Evaluation of beauty and ugliness showed similar patterns of activation in these brain regions. Our findings indicate that morality judgment and moral aesthetic judgment recruit different cortical networks that might decode others' behaviors at different levels. These results contribute to further understanding of the essence of the relationship between morality judgment and aesthetic judgment.


Author(s):  
Salim Lahmiri

How diverse regions of the brain are coordinated to produce objective-directed decision is the essence of neuroeconomics. Indeed, the latter is a formal framework to describe the involvement of numerous brain regions including frontal, cingulate, parietal cortex, and striatum in economic and financial decision-making process. The purpose of this chapter is to explain the relationship between economic decision making and emotion on one hand, and the relationship between economic decision making and prefrontal cortex on the other hand.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5163
Author(s):  
Ting Hu ◽  
Quanfei Zhu ◽  
Yuning Hu ◽  
Ghulam Mustafa Kamal ◽  
Yuqi Feng ◽  
...  

Free fatty acids serve as important bioactive molecules in the brain. They are involved in message transfer in the brain. There are many reports available in the literature regarding the role of cerebral fatty acids in message transfer; however, most of the studies are mainly focused on limited fatty acid species or only a few specific brain regions. To understand the relationship between cerebral functions and free fatty acids, it is necessary to investigate the distribution of the free fatty acids among different regions in the whole brain. In this study, free fatty acids were extracted from different brain regions and analyzed qualitatively and quantitatively using the stable isotopic labeling liquid chromatography–mass spectrometry approach. In total, 1008 potential free fatty acids were detected in the whole brain out of which 38 were found to be commonly present in all brain regions. Among different brain regions, the highest and the smallest amounts of potential free fatty acids were detected in the olfactory bulb and cerebellum, respectively. From a statistical point of view, 4-methyl-2-oxovaleric acid, cis-11, 14-eicosadienoic acid, tridecanoic acid, myristic acid, nonadecanoic acid, and arachidic acid were found to significantly vary among the four different brain regions (olfactory bulb, occipital lobe, hippocampus, and cerebellum). The variation in the composition of free fatty acids among different brain regions may be very important for investigating the relationship between free fatty acids and functions of cerebral regions.


Sign in / Sign up

Export Citation Format

Share Document