scholarly journals The Relationship Between Cognition and Cerebrovascular Reactivity: Implications for Task-Based fMRI

2021 ◽  
Vol 9 ◽  
Author(s):  
Rebecca J. Williams ◽  
M. Ethan MacDonald ◽  
Erin L. Mazerolle ◽  
G. Bruce Pike

Elucidating the brain regions and networks associated with cognitive processes has been the mainstay of task-based fMRI, under the assumption that BOLD signals are uncompromised by vascular function. This is despite the plethora of research highlighting BOLD modulations due to vascular changes induced by disease, drugs, and aging. On the other hand, BOLD fMRI-based assessment of cerebrovascular reactivity (CVR) is often used as an indicator of the brain's vascular health and has been shown to be strongly associated with cognitive function. This review paper considers the relationship between BOLD-based assessments of CVR, cognition and task-based fMRI. How the BOLD response reflects both CVR and neural activity, and how findings of altered CVR in disease and in normal physiology are associated with cognition and BOLD signal changes are discussed. These are pertinent considerations for fMRI applications aiming to understand the biological basis of cognition. Therefore, a discussion of how the acquisition of BOLD-based CVR can enhance our ability to map human brain function, with limitations and potential future directions, is presented.

2019 ◽  
Vol 9 (2) ◽  
pp. 43
Author(s):  
Megumi Mizuno ◽  
Tomoyuki Hiroyasu ◽  
Satoru Hiwa

The ability to coordinate one’s behavior with the others’ behavior is essential to achieve a joint action in daily life. In this paper, the brain activity during synchronized tapping task was measured using functional near infrared spectroscopy (fNIRS) to investigate the relationship between time coordination and brain function. Furthermore, using brain functional network analysis based on graph theory, we examined important brain regions and network structures that serve as the hub when performing the synchronized tapping task. Using the data clustering method, two types of brain function networks were extracted and associated with time coordination, suggesting that they were involved in expectation and imitation behaviors.


2020 ◽  
Author(s):  
Vincent Deluca ◽  
Katrien Segaert ◽  
Ali Mazaheri ◽  
Andrea Krott

A growing body of research shows that the brain adapts functionally and structurally to specific bilingual experiences. These brain adaptations seem related to modulations in cognitive processes (specifically the executive functions). However, the trajectory of these adaptations is varied and seems at least partially dependent on different aspects of language exposure and use. Here we provide a review of the existing theoretical models covering bilingualism-induced neuroplasticity. Moreover, we propose a unifying framework (Unifying the Bilingual Experience Trajectories, UBET) to more comprehensively map the relationship between the various neurocognitive adaptations and different aspects of bilingual experience trajectories, focusing on intensity and diversity of language use, language switching, relative proficiency, and duration of bilingual experience. Crucially, we also outline predictions regarding both relationships between different bilingual experience factors and relationships between the measurable neurocognitive adaptations. Our framework offers a theoretical backdrop and clear testable predictions for future large-scale empirical studies on individual differences in bilingual trajectories and their effects on neurocognitive adaptations.


2019 ◽  
Author(s):  
Shahanas E ◽  
Seeja T Panjikkaran ◽  
Sharon C L ◽  
Remya P R

Cocoa is regarded as a super food due to its high nutrient content and proven health benefits. Cocoa beans are rich in carbohydrate (31%), protein (11%), fat (54%), fibre (16%) and minerals. Cocoa is a good source of bioactive compounds too. The major bioactive components are polyphenols constituted of flavanoids and non flavanoids. The bioactive components with rich antioxidants and anti-inflammatory activities contribute to various health benefits. The flavonoid rich chocolates improve peripheral vascular function. The consumption of cocoa or chocolate are beneficial in inhibiting the complex molecular process leading to cancer. Flavanoids in cocoa increases insulin sensitivity by improving endothelial function and reducing oxidative stress. The cocoa flavonoids also penetrate and accumulate in the brain regions involved in learning and memory. The knowledge on bioactive compounds in cocoa and cocoa products suggests that they could be consumed as a part of wholesome, health promoting nutritional food.


2021 ◽  
Vol 15 ◽  
Author(s):  
Louis-Philippe Bernier ◽  
Clément Brunner ◽  
Azzurra Cottarelli ◽  
Matilde Balbi

The neurovascular unit (NVU) of the brain is composed of multiple cell types that act synergistically to modify blood flow to locally match the energy demand of neural activity, as well as to maintain the integrity of the blood-brain barrier (BBB). It is becoming increasingly recognized that the functional specialization, as well as the cellular composition of the NVU varies spatially. This heterogeneity is encountered as variations in vascular and perivascular cells along the arteriole-capillary-venule axis, as well as through differences in NVU composition throughout anatomical regions of the brain. Given the wide variations in metabolic demands between brain regions, especially those of gray vs. white matter, the spatial heterogeneity of the NVU is critical to brain function. Here we review recent evidence demonstrating regional specialization of the NVU between brain regions, by focusing on the heterogeneity of its individual cellular components and briefly discussing novel approaches to investigate NVU diversity.


2021 ◽  
Author(s):  
Mitchell Clough ◽  
Ichen Anderson Chen ◽  
Seong-Wook Park ◽  
Allison M Ahrens ◽  
Jeffrey N Stirman ◽  
...  

Understanding brain function requires monitoring local and global brain dynamics. Two-photon imaging of the brain across mesoscopic scales has presented trade-offs between imaging area and acquisition speed. We describe a flexible cellular resolution two-photon microscope capable of simultaneous video rate acquisition of four independently targetable brain regions spanning an approximate five-millimeter field of view. With this system, we demonstrate the ability to measure calcium activity across mouse sensorimotor cortex at behaviorally relevant timescales.


Author(s):  
Yael Dai ◽  
Inge-Marie Eigsti

This chapter reviews strengths and weaknesses in executive function (EF) domains, including inhibition, working memory, flexibility, fluency, and planning, in adolescents (age 13–19) with autism spectrum disorder (ASD). Given the dramatic developmental changes in the brain regions that support EF during the period of adolescence, it is critical to evaluate which EF abilities show a distinct profile during this period. As this chapter will demonstrate, youth with ASD show deficits across all domains of EF, particularly in complex tasks that include arbitrary instructions. We describe the fundamental measures for assessing skills in each domain and discuss limitations and future directions for research, as well as clinical implications of these findings for working with youth with ASD.


2003 ◽  
Vol 26 (5) ◽  
pp. 556-557 ◽  
Author(s):  
Emmanuel Gilissen ◽  
Thierry Smith

Fossil remains witness the relationship between the appearance of the middle ear and the expansion of the brain in early mammals. Nevertheless, the lack of detachment of ear ossicles in the mammaliaform Morganucodon, despite brain enlargement, points to other factors that triggered brain expansion in early mammals. Moreover, brain expansion in some early mammalian groups seems to have favored brain regions other than the cortex.


1987 ◽  
Vol 252 (6) ◽  
pp. H1183-H1191
Author(s):  
C. Iadecola ◽  
P. M. Lacombe ◽  
M. D. Underwood ◽  
T. Ishitsuka ◽  
D. J. Reis

We studied whether adrenal medullary catecholamines (CAs) contribute to the metabolically linked increase in regional cerebral blood flow (rCBF) elicited by electrical stimulation of the dorsal medullary reticular formation (DMRF). Rats were anesthetized (alpha-chloralose, 30 mg/kg), paralyzed, and artificially ventilated. The DMRF was electrically stimulated with intermittent trains of pulses through microelectrodes stereotaxically implanted. Blood gases were controlled and, during stimulation, arterial pressure was maintained within the autoregulated range for rCBF. rCBF and blood-brain barrier (BBB) permeability were determined in homogenates of brain regions by using [14C]iodoantipyrine and alpha-aminoisobutyric acid (AIB), respectively, as tracers. Plasma CAs (epinephrine and norepinephrine) were measured radioenzymatically. DMRF stimulation increased rCBF throughout the brain (n = 5; P less than 0.01, analysis of variance) and elevated plasma CAs substantially (n = 4). Acute bilateral adrenalectomy abolished the increase in plasma epinephrine (n = 4), reduced the increases in flow (n = 6) in cerebral cortex (P less than 0.05), and abolished them elsewhere in brain (P greater than 0.05). Comparable effects on rCBF were obtained by selective adrenal demedullation (n = 7) or pretreatment with propranolol (1.5 mg/kg iv) (n = 5). DMRF stimulation did not increase the permeability of the BBB to AIB (n = 5). We conclude that the increases in rCBF elicited from the DMRF has two components, one dependent on, and the other independent of CAs. Since the BBB is impermeable to CAs and DMRF stimulation fails to open the BBB, the results suggest that DMRF stimulation allows, through a mechanism not yet determined, circulating CAs to act on brain and affect brain function.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Seth A. Herd ◽  
Kai A. Krueger ◽  
Trenton E. Kriete ◽  
Tsung-Ren Huang ◽  
Thomas E. Hazy ◽  
...  

We address strategic cognitive sequencing, the “outer loop” of human cognition: how the brain decides what cognitive process to apply at a given moment to solve complex, multistep cognitive tasks. We argue that this topic has been neglected relative to its importance for systematic reasons but that recent work on how individual brain systems accomplish their computations has set the stage for productively addressing how brain regions coordinate over time to accomplish our most impressive thinking. We present four preliminary neural network models. The first addresses how the prefrontal cortex (PFC) and basal ganglia (BG) cooperate to perform trial-and-error learning of short sequences; the next, how several areas of PFC learn to make predictions of likely reward, and how this contributes to the BG making decisions at the level of strategies. The third models address how PFC, BG, parietal cortex, and hippocampus can work together to memorize sequences of cognitive actions from instruction (or “self-instruction”). The last shows how a constraint satisfaction process can find useful plans. The PFC maintains current and goal states and associates from both of these to find a “bridging” state, an abstract plan. We discuss how these processes could work together to produce strategic cognitive sequencing and discuss future directions in this area.


1957 ◽  
Vol 189 (1) ◽  
pp. 159-166 ◽  
Author(s):  
A. Van Harreveld ◽  
Sidney Ochs

Spreading depression is accompanied by a slow potential change, a drop in cortical conductivity and by vascular changes. The latter were investigated in histological preparations of cortex frozen while a spreading depression was in progress. In the cat and rabbit a broad wave of vasodilatation was observed. In the rabbit this appeared to be preceded by a narrow region of vasoconstriction. Spreading depression can be changed into spreading convulsive activity by administering CO2 in the respiratory air (7–12%). CO2 markedly decreased the drop in cortical conductivity but affected the magnitude of the slow potential change only moderately. It is postulated that both the conductivity drop during spreading depression and a similar drop observed after asphyxiation of the brain are caused by a transport of ions from the intercellular compartment into cortical cellular elements. The relationship between the slow potential change, conductivity drop, vascular changes and the changes in the electrocorticogram during spreading depression is discussed.


Sign in / Sign up

Export Citation Format

Share Document