scholarly journals Evolving Features of Hβ Doppler Velocity Fields at Sites of Flares

1993 ◽  
Vol 141 ◽  
pp. 267-270
Author(s):  
Wei Li ◽  
Guoxiang Ai ◽  
Hongqi Zhang

AbstractWe analyzed eight active regions with more than 600 flare kernels and ribbons, and relevant time sequence Hβ chromospheric Dopplergrams. These data showed that during several hours prior to the flares, the velocity field evolves so that the sites of the flare kernels and ribbons become close to the inversion line of the velocity field. This result holds regardless of whether or not the flare sites are wholly located in blue-shifted areas, or are far from the the inversion line of the line-of-sight velocity field, or are partly within red-shifted areas.

2013 ◽  
Vol 2013 ◽  
pp. 1-19 ◽  
Author(s):  
Daniel Carbunaru ◽  
Sabina Stefan ◽  
Monica Sasu ◽  
Victor Stefanescu

The mesoscale configurations are analysed associated withthesplitting process of convective cells responsible for severe weather phenomena in the south-eastern part of Romania. The analysis was performed using products from the S-band Doppler weather radar located in Medgidia. The cases studied were chosen to cover various synoptic configurations when the cell splitting process occurs. To detect the presence and intensity of the tropospheric jet, the Doppler velocity field and vertical wind profiles derived from radar algorithms were used. The relative Doppler velocity field was used to study relative flow associated with convective cells. Trajectories and rotational characteristics associated with convective cells were obtained from reflectivity and relative Doppler velocity fields at various elevations. This analysis highlights the main dynamic features associated with the splitting process of convective cells: the tropospheric jet and vertical moisture flow associated with the configuration of the flow relative to the convective cells for the lower and upper tropospheric layers. These dynamic characteristics seen in the Doppler based velocity field and in the relative Doppler velocity field to the storm can indicate further evolution of convective developments, with direct implications to very short range forecast (nowcasting).


2017 ◽  
Vol 63 (240) ◽  
pp. 629-636 ◽  
Author(s):  
DENIS VOYTENKO ◽  
TIMOTHY H. DIXON ◽  
DAVID M. HOLLAND ◽  
RYAN CASSOTTO ◽  
IAN M. HOWAT ◽  
...  

ABSTRACTOutlet glaciers undergo rapid spatial and temporal changes in flow velocity during calving events. Observing such changes requires both high temporal and high spatial resolution methods, something now possible with terrestrial radar interferometry. While a single such radar provides line-of-sight velocity, two radars define both components of the horizontal flow field. To assess the feasibility of obtaining the two-dimensional (2-D) flow field, we deployed two terrestrial radar interferometers at Jakobshavn Isbrae, a major outlet glacier on Greenland's west coast, in the summer of 2012. Here, we develop and demonstrate a method to combine the line-of-sight velocity data from two synchronized radars to produce a 2-D velocity field from a single (3 min) interferogram. Results are compared with the more traditional feature-tracking data obtained from the same radar, averaged over a longer period. We demonstrate the potential and limitations of this new dual-radar approach for obtaining high spatial and temporal resolution 2-D velocity fields at outlet glaciers.


1971 ◽  
Vol 43 ◽  
pp. 274-278 ◽  
Author(s):  
S. I. Gopasyuk ◽  
T. T. Tsap

Simultaneous observations of the magnetic fields, the line-of-sight velocities and brightness were made in active and quiet regions with the Crimean double-magnetograph in the following lines: Hα, K3 Ca II, Hβ, Hγ, Hδ, MgI λ 5184 Å, CaI λ 4227 Å, D1 NaI, BaII λ 4554 Å, CaI λ 6103 Å, FeI λ 5250 Å.It is shown, that in the active regions the horizontal velocity is larger than the vertical one.The mean velocities in the quiet solar photosphere have an isotropic distribution (Gopasyuk and Kalman, 1971).The mean vertical velocities increase exponentially with height in active and quiet regions.The correlation between velocities at different levels in active and quiet regions decreases with the distance between the levels of the formation of spectral lines, and it disappears for the velocities recorded in λ 6103 Å and Hβ, for λ 5184 and Hα lines in active regions and for the velocities recorded in λ 5250 Å and Hα lines in quiet regions.The position of the maximal field strength within a magnetic hill coincides statistically with the zero line of the line-of-sight velocities for active as well as for quiet regions.


1994 ◽  
Vol 144 ◽  
pp. 47-51 ◽  
Author(s):  
V. Bumba ◽  
M. Klvaňa ◽  
J. Sýkora

Since the reconstruction of the photoelectric magnetograph of the Ondřejov Observatory in 1990 (Klvaňa and Bumba, 1994; Klvaňaet al., 1994), several hundred sets of measurements (mostly in the line FeI 5253.47 Å) have been obtained during 1991 and 1992. The longitudinal magnetic and Doppler velocity fields, as well as the continuum spectral line intensity distribution in more than one hundred areas on the solar surface have been investigated (the measurements of one region were usually repeated several times). Often a relatively large part of the solar disk was studied.Comparing the measured areas with the distribution of active regions and other activity phenomena on the Hα Synoptic Charts, it has been found that some of the measurements were distributed very favorably around coronal holes, sometimes covering smaller parts and in a few cases even larger parts of their areas.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1205
Author(s):  
Ruiqi Wang ◽  
Riqiang Duan ◽  
Haijun Jia

This publication focuses on the experimental validation of film models by comparing constructed and experimental velocity fields based on model and elementary experimental data. The film experiment covers Kapitza numbers Ka = 278.8 and Ka = 4538.6, a Reynolds number range of 1.6–52, and disturbance frequencies of 0, 2, 5, and 7 Hz. Compared to previous publications, the applied methodology has boundary identification procedures that are more refined and provide additional adaptive particle image velocimetry (PIV) method access to synthetic particle images. The experimental method was validated with a comparison with experimental particle image velocimetry and planar laser induced fluorescence (PIV/PLIF) results, Nusselt’s theoretical prediction, and experimental particle tracking velocimetry (PTV) results of flat steady cases, and a good continuity equation reproduction of transient cases proves the method’s fidelity. The velocity fields are reconstructed based on different film flow model velocity profile assumptions such as experimental film thickness, flow rates, and their derivatives, providing a validation method of film model by comparison between reconstructed velocity experimental data and experimental velocity data. The comparison results show that the first-order weighted residual model (WRM) and regularized model (RM) are very similar, although they may fail to predict the velocity field in rapidly changing zones such as the front of the main hump and the first capillary wave troughs.


Author(s):  
VINCENT T. WOOD ◽  
ROBERT P. DAVIES-JONES ◽  
ALAN SHAPIRO

AbstractSingle-Doppler radar data are often missing in important regions of a severe storm due to low return power, low signal-to-noise ratio, ground clutter associated with normal and anomalous propagation, and missing radials associated with partial or total beam blockage. Missing data impact the ability of WSR-88D algorithms to detect severe weather. To aid the algorithms, we develop a variational technique that fills in Doppler velocity data voids smoothly by minimizing Doppler velocity gradients while not modifying good data. This method provides estimates of the analysed variable in data voids without creating extrema.Actual single-Doppler radar data of four tornadoes are used to demonstrate the variational algorithm. In two cases, data are missing in the original data, and in the other two, data are voided artificially. The filled-in data match the voided data well in smoothly varying Doppler velocity fields. Near singularities such as tornadic vortex signatures, the match is poor as anticipated. The algorithm does not create any velocity peaks in the former data voids, thus preventing false triggering of tornado warnings. Doppler circulation is used herein as a far-field tornado detection and advance-warning parameter. In almost all cases, the measured circulation is quite insensitive to the data that have been voided and then filled. The tornado threat is still apparent.


1991 ◽  
Vol 58 (3) ◽  
pp. 820-824 ◽  
Author(s):  
A. Bogobowicz ◽  
L. Rothenburg ◽  
M. B. Dusseault

A semi-analytical solution for plane velocity fields describing steady-state incompressible flow of nonlinearly viscous fluid into an elliptical opening is presented. The flow is driven by hydrostatic pressure applied at infinity. The solution is obtained by minimizing the rate of energy dissipation on a sufficiently flexible incompressible velocity field in elliptical coordinates. The medium is described by a power creep law and solutions are obtained for a range of exponents and ellipse eccentricites. The obtained solutions compare favorably with results of finite element analysis.


2012 ◽  
Vol 8 (S294) ◽  
pp. 13-24
Author(s):  
Hongqi Zhang

AbstractThe helicity is important to present the basic topological configuration of magnetic field in solar atmosphere. The distribution of magnetic helicity in solar atmosphere is presented by means of the observational (vector) magnetograms. As the kinetic helicity in the solar subatmosphere can be inferred from the velocity field based on the technique of the helioseismology and used to compare with the magnetic helicity in the solar atmosphere, the observational helicities provide the important chance for the confirmation on the generation of magnetic fields in the subatmosphere and solar dynamo models also. In this paper, we present the observational magnetic and kinetic helicity in solar active regions and corresponding questions, except the relationship with solar eruptive phenomena.


1986 ◽  
Vol 8 ◽  
pp. 117-123 ◽  
Author(s):  
R.M. Krimmel ◽  
L.A. Rasmussen

The terminus of Columbia Glacier, Alaska, was observed with a single automatic 35 mm camera to determine velocity with a time resolution in the order of a day. The photographic coordinates of the image of a target were then transformed linearly into the direction numbers of the line of sight from the camera to the target. The camera orientation was determined from the film-plane locations of known landmark points by using an adaption of vertical photogrammetry techniques. The line of sight, when intersected with some mathematically-defined glacier surface, defines the true space coordinates of a target, The time sequence of a target’s position was smoothed, first in horizontal x, y space to a straight line, then in y (the principal direction of ice flow) and time with a smoothing cubic spline, and then the x-component was computed from the y-component by considering the inclination of the straight line. This allows daily velocities (about 8 m/day) to be measured at a distance of 5 km, using a 105 mm lens. Errors in daily displacements were estimated to be 1 m. The terminus configuration was also measured using the same photo set.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247826
Author(s):  
Bård A. Bendiksen ◽  
Gary McGinley ◽  
Ivar Sjaastad ◽  
Lili Zhang ◽  
Emil K. S. Espe

Myocardial velocities carry important diagnostic information in a range of cardiac diseases, and play an important role in diagnosing and grading left ventricular diastolic dysfunction. Tissue Phase Mapping (TPM) Magnetic Resonance Imaging (MRI) enables discrete sampling of the myocardium’s underlying smooth and continuous velocity field. This paper presents a post-processing framework for constructing a spatially and temporally smooth and continuous representation of the myocardium’s velocity field from TPM data. In the proposed scheme, the velocity field is represented through either linear or cubic B-spline basis functions. The framework facilitates both interpolation and noise reducing approximation. As a proof-of-concept, the framework was evaluated using artificially noisy (i.e., synthetic) velocity fields created by adding different levels of noise to an original TPM data. The framework’s ability to restore the original velocity field was investigated using Bland-Altman statistics. Moreover, we calculated myocardial material point trajectories through temporal integration of the original and synthetic fields. The effect of noise reduction on the calculated trajectories was investigated by assessing the distance between the start and end position of material points after one complete cardiac cycle (end point error). We found that the Bland-Altman limits of agreement between the original and the synthetic velocity fields were reduced after application of the framework. Furthermore, the integrated trajectories exhibited consistently lower end point error. These results suggest that the proposed method generates a realistic continuous representation of myocardial velocity fields from noisy and discrete TPM data. Linear B-splines resulted in narrower limits of agreement between the original and synthetic fields, compared to Cubic B-splines. The end point errors were also consistently lower for Linear B-splines than for cubic. Linear B-splines therefore appear to be more suitable for TPM data.


Sign in / Sign up

Export Citation Format

Share Document