scholarly journals Mechanical Properties of First Year Sea Ice in Saroma Lagoon

1985 ◽  
Vol 6 ◽  
pp. 278-280
Author(s):  
Hisao Matsushita ◽  
Nobuyoshi Yashima

This paper deals with compressive strength vs temperature characteristics (-40 ºC to -2ºC), size effect (cross-sectional area of test specimen) and probability distribution of compressive strength and fracture toughness KIC (corresponding to notch effect in bending strength), of first year sea ice sampled from Saroma Lagoon. The main experimental results are as follows. (1) Temperature dependent compressive fracture modes: at temperatures of -20 ºC to 0ºC, crush fracture is dominant, and at temperatures of -40 ºC to -20 C, brittle fracture is dominant. (2) The larger the cross-sectional area of a test specimen, the lower the compressive strength becomes. It is inferred that the number of weak spots increases with increase in the cross-sectional area of the test piece, which thus becomes more susceptible to fracture. (3) The scatter of compressive strength can be approximated by a normal distribution curve. (4) The KIC values of sea ice are below 10 kg/cm2 cm, though they change slightly depending on the dimensions of test pieces, the relative angle between crystal growth direction and load direction, environmental condition (air or water), and testing method.

1985 ◽  
Vol 6 ◽  
pp. 278-280
Author(s):  
Hisao Matsushita ◽  
Nobuyoshi Yashima

This paper deals with compressive strength vs temperature characteristics (-40 ºC to -2ºC), size effect (cross-sectional area of test specimen) and probability distribution of compressive strength and fracture toughness KIC (corresponding to notch effect in bending strength), of first year sea ice sampled from Saroma Lagoon. The main experimental results are as follows. (1) Temperature dependent compressive fracture modes: at temperatures of -20 ºC to 0ºC, crush fracture is dominant, and at temperatures of -40 ºC to -20 C, brittle fracture is dominant. (2) The larger the cross-sectional area of a test specimen, the lower the compressive strength becomes. It is inferred that the number of weak spots increases with increase in the cross-sectional area of the test piece, which thus becomes more susceptible to fracture. (3) The scatter of compressive strength can be approximated by a normal distribution curve. (4) The KIC values of sea ice are below 10 kg/cm2cm, though they change slightly depending on the dimensions of test pieces, the relative angle between crystal growth direction and load direction, environmental condition (air or water), and testing method.


Author(s):  
Oddgeir Dalane ◽  
Vegard Aksnes ◽  
Sveinung Løset

First-year sea ice ridges are a major concern for structures operating in the Arctic offshore and will in many cases give the design mooring load. In this paper, the response of a moored conical floater, somewhat similar to the well-known Kulluk, is studied in first-year ridges. The study is based on model tests performed at Hamburg Ship Model Basin (HSVA) in several ridges with different properties. Mooring forces and floater response, resulting from interaction with different ridges, were compared with respect to ridge properties, ridge behavior, and simulated ice management. Clearance of accumulated rubble upstream the structure was the dominating physical process in the ridge–structure interaction. Accumulation of rubble caused large mooring forces. The amount of accumulated rubble depended on the ridge cross-sectional area, thus the mooring forces increased with ridge cross-sectional area. Large mooring forces were also experienced after the ridge was passed by the structure due to difficulties with clearing of accumulated rubble.


Author(s):  
Oddgeir Dalane ◽  
Vegard Aksnes ◽  
Sveinung Lo̸set ◽  
Jan Vidar Aarsnes

First-year sea ice ridges are a major concern for structures operating in the Arctic and will in many cases give the design mooring load. In this paper, a moored conical floater, somewhat similar to the well-known Kulluk, is studied in first-year ridges. The study is based on model tests performed at HSVA in several ridges with different properties. Mooring forces and floater response resulting from interaction with different ridges were compared with respect to ridge properties, ridge behaviour and simulated ice management. Clearance of accumulated rubble upstream the structure was the dominating physical process in the ridge-structure interaction. Accumulation of rubble caused large mooring forces. The amount of accumulated rubble depended on the ridge cross-sectional area, thus the mooring forces increased with ridge cross-sectional area. Large mooring forces were also experienced after the initial position of the ridge was passed due to difficulties with clearing of accumulated rubble.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gernot Seppel ◽  
Andreas Voss ◽  
Daniel J. H. Henderson ◽  
Simone Waldt ◽  
Bernhard Haller ◽  
...  

Abstract Background While supraspinatus atrophy can be described according to the system of Zanetti or Thomazeau there is still a lack of characterization of isolated subscapularis muscle atrophy. The aim of this study was to describe patterns of muscle atrophy following repair of isolated subscapularis (SSC) tendon. Methods Forty-nine control shoulder MRI scans, without rotator cuff pathology, atrophy or fatty infiltration, were prospectively evaluated and subscapularis diameters as well as cross sectional areas (complete and upper half) were assessed in a standardized oblique sagittal plane. Calculation of the ratio between the upper half of the cross sectional area (CSA) and the total CSA was performed. Eleven MRI scans of patients with subscapularis atrophy following isolated subscapularis tendon tears were analysed and cross sectional area ratio (upper half /total) determined. To guarantee reliable measurement of the CSA and its ratio, bony landmarks were also defined. All parameters were statistically compared for inter-rater reliability, reproducibility and capacity to quantify subscapularis atrophy. Results The mean age in the control group was 49.7 years (± 15.0). The mean cross sectional area (CSA) was 2367.0 mm2 (± 741.4) for the complete subscapularis muscle and 1048.2 mm2 (± 313.3) for the upper half, giving a mean ratio of 0.446 (± 0.046). In the subscapularis repair group the mean age was 56.7 years (± 9.3). With a mean cross sectional area of 1554.7 mm2 (± 419.9) for the complete and of 422.9 mm2 (± 173.6) for the upper half of the subscapularis muscle, giving a mean CSA ratio of 0.269 (± 0.065) which was seen to be significantly lower than that of the control group (p < 0.05). Conclusion Analysis of typical atrophy patterns of the subscapularis muscle demonstrates that the CSA ratio represents a reliable and reproducible assessment tool in quantifying subscapularis atrophy. We propose the classification of subscapularis atrophy as Stage I (mild atrophy) in case of reduction of the cross sectional area ratio < 0.4, Stage II (moderate atrophy) in case of < 0.35 and Stage III (severe atrophy) if < 0.3.


1963 ◽  
Vol 3 (10) ◽  
pp. 249
Author(s):  
RM Seebeck

Variations in the cross-sectional area of eye muscle of carcasses cut between the tenth and eleventh ribs were investigated, using 105 Hereford and 51 Angus steers aged 20 months. These cattle consisted of three groups, born in successive years. At constant carcass weight, statistically significant differences in eye muscle area were found between breeds and between years. Breed and year differences were also found in eye muscle area with width and depth of eye muscle constant, so that there are limitations to the estimation of eye muscle area from width and depth measurements. A nomograph is given for estimating eye muscle area from width and depth for Hereford and Angus cattle, when all animals are reared in the same year and environment. The use of eye muscle area as an indicator of weight of carcass muscle is discussed.


2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2002 ◽  
Vol 7 (2) ◽  
pp. 247-251 ◽  
Author(s):  
Masahiko Noguchi ◽  
Toshiya Kitaura ◽  
Kazuya Ikoma ◽  
Yoshiaki Kusaka

2021 ◽  
pp. 028418512110032
Author(s):  
Henrique Mansur ◽  
Guilherme Estanislau ◽  
Marcos de Noronha ◽  
Rita de Cassia Marqueti ◽  
Emerson Fachin-Martins ◽  
...  

Background The cross-sectional area (CSA) records make an essential measurement for determining the mechanical properties of tendons, such as stress and strength. However, there is no consensus regarding the best method to record the CSA from different tendons. Purpose To determine intra- and inter-rater reliability for CSA measures from magnetic resonance imaging (MRI) of the following tendons: tibialis anterior; tibialis posterior; fibularis longus and brevis; and Achilles. Material and Methods We designed an observational study with repeated measures taken from a convenience sample of 20 participants diagnosed with acute or chronic ankle sprain. Two independent raters took three separate records from the CSA of ankle tendon images of each MRI slice. The intra-class correlation coefficient (ICC) and 95% limits of agreement (LoA) defined the quality (associations) and magnitude (differences), respectively, of intra- and inter-rater reliability on the measures plotted by the Bland–Altman method. Results Data showed very high intra- and inter-rater correlations for measures taken from all tendons analyzed (ICC 0.952–0.999). It also revealed an excellent agreement between raters (0.12%–2.3%), with bias no higher than 2 mm2 and LoA in the range of 4.4–7.9 mm2. The differences between repeated measures recorded from the thinnest tendons (fibularis longus and brevis) revealed the lowest bias and narrowest 95% LoA. Conclusion Reliability for the CSA of ankle tendons measured from MRI taken by independent rates was very high, with the smallest differences between raters observed when the thinnest tendon was analyzed.


2005 ◽  
Vol 61 (2) ◽  
Author(s):  
M. A. Gregory ◽  
M. N. Deane ◽  
M. Marsh

Objective: The precise mechanisms by which massage promotes repair in injured soft tissue are unknown. Various authorshave attributed the beneficial effects of massage to vasodilation and increased skin and muscle blood flow. The aim of this study was to determine whether deep transverse friction massage (DTF) causes capillary vasodilation in untraumatised skeletal muscle. Setting: Academic institution.Interventions: Twelve New Zealand white rabbits were anaesthetised and the left biceps femoris muscle received 10 minutes of DTF. Following treatment, wedge biopsies were taken from the musclewithin 10 minutes of treatment (R1 - 4), 24 hours (R5 - 8) and 6 days(R9 - 12) after treatment. To serve as controls, similar biopsies weretaken from the right biceps femoris of animals. The samples were fixed, dehydrated and embedded in epoxy resin.Transverse sections (1µm) of muscle were cut, stained with 1% aqueous alkaline toluidine blue and examined with a light microscope using a 40X objective. Images containing capillaries were captured using an image analyser with SIS software and the cross sectional diameters of at least 60 capillaries were measured from each specimen. Main Outcome Measures: Changes in capillary diameter. Results: The mean capillary diameters in control muscle averaged 4.76 µm. DTF caused a significant immediate increase of 17.3% in cross sectional area (p<0.001), which was not significantly increased by 10.0% after 24 hours (p>0.05). Six days after treatment the cross-sectional area of the treated muscle was 7.6% smaller than the controls. Conclusions: This confirms the contention that DTF stimulates muscle blood flow immediately after treatment and this may account for its beneficial effects in certain conditions. 


Sign in / Sign up

Export Citation Format

Share Document