High-order singularities of 5R planar parallel robots

Robotica ◽  
2018 ◽  
Vol 37 (2) ◽  
pp. 233-245 ◽  
Author(s):  
Mustafa Özdemir

SUMMARYSingularity analysis of parallel manipulators is an active research field in robotics. The present article derives for the first time in the literature a condition under which a five-bar parallel robot encounters high-order parallel singularities. In this regard, by focusing on the planar 5R mechanism, a theorem is given in terms of the slope of its coupler curve at the parallel singular configurations. At high-order parallel singularities, the associated determinant vanishes simultaneously with at least its first-order time derivative. The determination of such singularities is quite important since in their presence, some special conditions should be satisfied for bounded inverse dynamic solutions.

2020 ◽  
Vol 26 (7-8) ◽  
pp. 475-489
Author(s):  
Mahdi Sharifnia

In the present research, a previously presented beam element in planar static problems is extended to planar dynamic problems. As investigated in the previous work of the author, formulation of the presented Euler–Bernoulli beam element is simpler and the beam element more efficient than similar elements in large deflection problems. In the present element, the main idea is estimating the dimensions of the body in the deformed configuration, instead of estimating its absolute or relative positions. Therefore, two parameters, the length and slope angle of the beam centroid curve, are selected to be estimated by interpolating polynomials. To verify the efficiency of the element, obtained results for the flexible pendulum are compared with previous works. Because of the simple and efficient formulation of the element, it can be efficiently used for dynamic analysis of planar flexible linkages, and especially in flexible parallel robots, which are the main aims of the present research. Finally, the inverse dynamic of the flexible 3-RRR parallel robot is presented.


Author(s):  
Kwun-Lon Ting ◽  
Kuan-Lun Hsu

The paper presents a simple and effective kinematic model and methodology, based on Ting’s N-bar rotatability laws [2629], to assess the extent of the position uncertainty caused by joint clearances for any linkage and manipulators connected with revolute or prismatic pairs. The model is derived and explained with geometric rigor based on Ting’s rotatability laws. The significant contribution includes (1) the clearance link model for P-joint that catches the translation and oscillation characteristics of the slider within the clearance and separates the geometric effect of clearance from the input error, (2) a simple uncertainty linkage model that features a deterministic instantaneous structure mounted on non-deterministic flexible legs, (3) the generality of the method, which is effective for multiloop linkages and parallel manipulators. The discussion is carried out through symmetrically constructed planar eight-bar parallel robots. It is found that the uncertainty region of a three-leg parallel robot is enclosed by a hexagon, while that of its serial counterpart is enclosed by a circle inscribed by the hexagon. A numerical example is also presented. The finding and proof, though only based on three-leg planar 8-bar parallel robots, may have a wider implication suggesting that based on kinematics, parallel robots tends to inherit more position uncertainty than their serial counterparts. The use of more loops in parallel robots cannot fully offset the adverse effect on position uncertainty caused by the use of more joints.


2011 ◽  
Vol 3 (3) ◽  
Author(s):  
Sébastien Briot ◽  
Vigen Arakelian

In the present paper, we expand information about the conditions for passing through Type 2 singular configurations of a parallel manipulator. It is shown that any parallel manipulator can cross the singular configurations via an optimal control permitting the favorable force distribution, i.e., the wrench applied on the end-effector by the legs and external efforts must be reciprocal to the twist along with the direction of the uncontrollable motion. The previous studies have proposed the optimal control conditions for the manipulators with rigid links and flexible actuated joints. The different polynomial laws have been obtained and validated for each examined case. The present study considers the conditions for passing through Type 2 singular configurations for the parallel manipulators with flexible links. By computing the inverse dynamic model of a general flexible parallel robot, the necessary conditions for passing through Type 2 singular configurations are deduced. The suggested approach is illustrated by a 5R parallel manipulator with flexible elements and joints. It is shown that a 16th order polynomial law is necessary for the optimal force generation. The obtained results are validated by numerical simulations carried out using the software ADAMS.


2011 ◽  
Vol 121-126 ◽  
pp. 1590-1594
Author(s):  
Yan Shi ◽  
Hong Xin Yue ◽  
Yi Lu ◽  
Lian He Guo

Firstly, 3-DOF parallel robots were classified into different types from the view of moving form. A new method of analyzing the singularity of 3-DOF parallel robots was introduced, which is based on translational Jacobian matrix and rotational Jacobian matrix. The singularity of parallel robots with pure translational form and pure rotational form was introduced summarily. Secondly, the process of solving the plane-symmetry 3-RPS parallel robot with combined moving forms was focused on, through which translational Jacobian matrix and rotational Jacobian matrix were adopted. Finally, the solving results were compared with the axis-symmetry 3-RPS parallel robot, which showed more general singularity can be solved through the new method.


2021 ◽  
Author(s):  
Luquan Li ◽  
Yuefa Fang ◽  
Lin Wang ◽  
Jiaqiang Yao

Abstract Due to the complex structures of multi-limbed parallel robots, conventional parallel robots generally have limited workspace, complex kinematics, and complex dynamics, which increases the application difficulty of parallel robot in industrial engineering. To solve the above problems, this paper proposes a single-loop Schönflies motion parallel robot with full cycle rotation, the robot can generate Schönflies motion by the most simplified structure. The novel Schönflies motion parallel robot is a two-limb parallel mechanism with least links and joints, and each limb is driven by a 2-degree of freedom (DOF) cylindrical driver (C-driver). The full cycle rotation of the output link is achieved by “…R-H…” structure, where the revolute (R) and helical (H) joints are coaxial. Mobility, kinematics, workspace and singularity analysis of novel Schönflies motion parallel robot are analyzed. Then, dynamic model is formulated based on the principle of virtual work. Moreover, a pick-and-place task is implemented by proposed Schönflies motion parallel robot and a serial SCARA robot, respectively. The simulation results verify the correctness of the theoretical model. Furthermore, dynamics performances of Schönflies motion parallel robot and serial SCARA robot are compared, which reveal the performance merits of proposed Schönflies motion parallel robot.


Author(s):  
Saeed Behzadipour ◽  
Robert Dekker ◽  
Amir Khajepour ◽  
Edmon Chan

The growing needs for high speed positioning devices in the automated manufacturing industry have been challenged by robotic science for more than two decades. Parallel manipulators have been widely used for this purpose due to their advantage of lower moving inertia over the conventional serial manipulators. Cable actuated parallel robots were introduced in 1980’s to reduce the moving inertia even further. In this work, a new cable-based parallel robot is introduced. For this robot, the cables are used not only to actuate the end-effector but also to apply the necessary kinematic constraints to provide three pure translational degrees of freedom. In order to maintain tension in the cables, a passive air cylinder is used to push the end-effector against the stationary platform. In addition to low moving inertia, the new design benefits from simplicity and low manufacturing cost by eliminating joints from the robot’s mechanism. The design procedure and the results of experiments will be discussed in the following.


Author(s):  
Mansour Abtahi ◽  
Hodjat Pendar ◽  
Aria Alasty ◽  
Gholamreza Vossoughi

In the past few years, parallel manipulators have become increasingly popular in industry, especially, in the field of machine tools. Hexaglide is a 6 DOF parallel manipulator that can be used as a high speed milling machine. In this paper, the kinematics and singularity of Hexaglide parallel manipulator are studied systematically. At first, this robot has been modeled and its inverse and forward kinematic problems have been solved. Then, formulas for solving inverse velocity are derived and Jacobian matrix is obtained. After that, three different types of singularity for this type of robot have been investigated. Finally a numerical example is presented.


2011 ◽  
Vol 219-220 ◽  
pp. 953-956
Author(s):  
Jin Liang Gong ◽  
Yan Fei Zhang ◽  
Xiu Ting Wei

Redundant parallel robots have been under increasing developments from a theoretical view point as well as for practical applications. Compared with the traditional parallel manipulators, they have such merits of more load, faster speed and higher accuracy. The method about how to build up redundant actuation parallel robot is introduced. Considering that the kinematic joint and limb are basic elements to constitute a proper parallel robot mechanism, special Plücker coordinates is adopted to describe the displacements of the output link of a limb or the robot mechanism. Then the principle for design of the redundant actuation parallel robot mechanisms is presented and example of the 2RRR&2PP parallel robot mechanism is brought forth and analyzed by this method.


Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Tommaso Marchi ◽  
Giovanni Mottola ◽  
Josep M. Porta ◽  
Federico Thomas ◽  
Marco Carricato

Parallel robots with configurable platforms are a class of robots in which the end-effector has an inner mobility, so that its overall shape can be reconfigured: in most cases, the end-effector is thus a closed-loop kinematic chain composed of rigid links. These robots have a greater flexibility in their motion and control with respect to rigid-platform parallel architectures, but their kinematics is more challenging to analyze. In our work, we consider n-RRR planar configurable robots, in which the end-effector is a chain composed of n links and revolute joints, and is controlled by n rotary actuators located on the base of the mechanism. In particular, we study the geometrical design of such robots and their direct and inverse kinematics for n=4, n=5 and n=6; we employ the bilateration method, which can simplify the kinematic analysis and allows us to generalize the approach and the results obtained for the 3-RRR mechanism to n-RRR robots (with n>3). Then, we study the singularity configurations of these robot architectures. Finally, we present the results from experimental tests that have been performed on a 5–RRR robot prototype.


2018 ◽  
Vol 10 (3) ◽  
Author(s):  
Damien Chablat ◽  
Xianwen Kong ◽  
Chengwei Zhang

Most multimode parallel robots can change operation modes by passing through constraint singularities. This paper deals with a comprehensive kinematic study of a three degrees-of-freedom (DOF) multimode three-PRPiR parallel robot developed at Heriot-watt University. This robot is able to reach several operation modes without crossing any constraint singularity by using lockable Pi and R joints. Here, a Pi joint may act as a 1DOF planar parallelogram if its lockable P (prismatic) joint is locked or a 2DOF RR serial chain if its lockable P joint is released. The operation modes of the robot include a 3T operation mode and four 2T1R operation modes with two different directions of the rotation axis of the moving platform. The inverse kinematics and forward kinematics of the robot in each operation mode are dealt with in detail. The joint space and workspace analysis of the robot allow us to know the regions of the workspace that the robot can reach in each operation mode. It is shown that the robot is able to change assembly mode in one operation mode by passing through another operation mode.


Sign in / Sign up

Export Citation Format

Share Document