A self-perpetuating bamboo disturbance cycle in a neotropical forest

2006 ◽  
Vol 22 (5) ◽  
pp. 587-597 ◽  
Author(s):  
Bronson W. Griscom ◽  
P. Mark S. Ashton

We investigate a hypothesis for explaining maintenance of forest canopy dominance: bamboo (Guadua weberbaueri and Guadua sarcocarpa) loads and crushes trees, resulting in a self-perpetuating disturbance cycle. Forest inventory data revealed a peculiar pattern of tree form and size class distribution in bamboo-dominated plots within the Tambopata River watershed, Madre de Dios, Peru. Bamboo disproportionately loaded trees 5–29 cm in diameter, and this size class had over seven times more canopy damage than trees in control plots without bamboo. These differences were accompanied by reduced tree basal area and tree density in the 5–29-cm-diameter size class in the presence of bamboo. Elevated tree canopy damage was not apparent for trees ≥30 cm dbh, which are beyond the reach of bamboo. Additional evidence for the impact of bamboo was revealed by an experiment using artificial metal trees. Artificial trees in bamboo-dominated forest plots had nine times higher frequency of physical damage and nine times more plant mass loading as compared with control plots. Our results support the hypothesis that bamboo loading causes elevated physical damage to trees and suppresses tree recruitment, particularly for trees 5–29 cm in diameter.

2000 ◽  
Vol 16 (3) ◽  
pp. 355-367 ◽  
Author(s):  
Michiko Nakagawa ◽  
Kenta Tanaka ◽  
Tohru Nakashizuka ◽  
Tatsuhiro Ohkubo ◽  
Tsuyoshi Kato ◽  
...  

The impact of the unusually severe drought associated with the 1997–1998 El Niño on tropical forest dynamics in Sarawak, Malaysia was examined. Mortality during the non-drought period (1993–1997) in a core plot (1.38 ha) was 0.89 % y−1, while that during the drought period (1997–1998) in the same plot and a peripheral plot was 6.37 and 4.35 % y−1, respectively. The basal area lost in the drought interval was 3.4 times that of the annual incremental basal area in 1993–1997. Drought mortality was higher for the smaller trees, though it was less size dependent than the non-drought mortality. Dipterocarpaceae, which is the dominant family in the study plot, had a mortality 12–30 times higher in the drought than the non-drought period. There were no significant differences in mortality among the topographic types. From the results of a log-linear model (multi-factored contingency table), the death of trees was correlated with size class, indicating a change in the size-class structure of the forest. Thus, both the species composition and structure are totally affected by such an episodic drought even in a per-humid tropical forest.


Author(s):  
Wayan Budiarsa Suyasa ◽  
Sri Kunti Pancadewi G. A ◽  
Iryanti E. Suprihatin ◽  
Dwi Adi Suastuti G. A.

In order to maintain the environmental carrying capacity of coastal tourism, this research was conducted to determine the condition of river water environmental pollution in the Petitenget beach area and pollutant source activities. Determination of water quality is carried out by analyzing the water quality taken at several sampling points in the four rivers that lead to the Petitenget beach. Determined the pollution index value (IP) of the physical chemical and biological pollution parameters. The results showed that the four rivers that flow into the Petitenget Beach area had been contaminated with indications of pH, BOD, COD, ammonia, Coliform and E. coli which exceeded water quality category III class quality (PerGub Bali No 16 Year 2016). The four rivers are included in the criteria of severe contamination. The four rivers have experienced physical damage or structural changes that have very high discharge fluctuations both in quantity and quality. Slimy basic structure, smelly and slum aesthetic waters. While the indication of the impact of pollution is waste water which is directly discharged into the river from hotels, restaurants, homestays, commercial centers and settlements.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 9
Author(s):  
Adrien Michez ◽  
Stéphane Broset ◽  
Philippe Lejeune

In the context of global biodiversity loss, wildlife population monitoring is a major challenge. Some innovative techniques such as the use of drones—also called unmanned aerial vehicle/system (UAV/UAS)—offer promising opportunities. The potential of UAS-based wildlife census using high-resolution imagery is now well established for terrestrial mammals or birds that can be seen on images. Nevertheless, the ability of UASs to detect non-conspicuous species, such as small birds below the forest canopy, remains an open question. This issue can be solved with bioacoustics for acoustically active species such as bats and birds. In this context, UASs represent an interesting solution that could be deployed on a larger scale, at lower risk for the operator, and over hard-to-reach locations, such as forest canopies or complex topographies, when compared with traditional protocols (fixed location recorders placed or handled by human operators). In this context, this study proposes a methodological framework to assess the potential of UASs in bioacoustic surveys for birds and bats, using low-cost audible and ultrasound recorders mounted on a low-cost quadcopter UAS (DJI Phantom 3 Pro). The proposed methodological workflow can be straightforwardly replicated in other contexts to test the impact of other UAS bioacoustic recording platforms in relation to the targeted species and the specific UAS design. This protocol allows one to evaluate the sensitivity of UAS approaches through the estimate of the effective detection radius for the different species investigated at several flight heights. The results of this study suggest a strong potential for the bioacoustic monitoring of birds but are more contrasted for bat recordings, mainly due to quadcopter noise (i.e., electronic speed controller (ESC) noise) but also, in a certain manner, to the experimental design (use of a directional speaker with limited call intensity). Technical developments, such as the use of a winch to safely extent the distance between the UAS and the recorder during UAS sound recordings or the development of an innovative platform, such as a plane–blimp hybrid UAS, should make it possible to solve these issues.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Faheem Aslam ◽  
Hyoung-Goo Kang ◽  
Khurrum Shahzad Mughal ◽  
Tahir Mumtaz Awan ◽  
Yasir Tariq Mohmand

AbstractTerrorism in Pakistan poses a significant risk towards the lives of people by violent destruction and physical damage. In addition to human loss, such catastrophic activities also affect the financial markets. The purpose of this study is to examine the impact of terrorism on the volatility of the Pakistan stock market. The financial impact of 339 terrorist attacks for a period of 18 years (2000–2018) is estimated w.r.t. target type, days of the week, and surprise factor. Three important macroeconomic variables namely exchange rate, gold, and oil were also considered. The findings of the EGARCH (1, 1) model revealed that the terrorist attacks targeting the security forces and commercial facilities significantly increased the stock market volatility. The significant impact of terrorist attacks on Monday, Tuesday, and Thursday confirms the overreaction of investors to terrorist news. Furthermore, the results confirmed the negative linkage between the surprise factor and stock market returns. The findings of this study have significant implications for investors and policymakers.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 433
Author(s):  
Xiaolan Huang ◽  
Weicheng Wu ◽  
Tingting Shen ◽  
Lifeng Xie ◽  
Yaozu Qin ◽  
...  

This research was focused on estimation of tree canopy cover (CC) by multiscale remote sensing in south China. The key aim is to establish the relationship between CC and woody NDVI (NDVIW) or to build a CC-NDVIW model taking northeast Jiangxi as an example. Based on field CC measurements, this research used Google Earth as a complementary source to measure CC. In total, 63 sample plots of CC were created, among which 45 were applied for modeling and the remaining 18 were employed for verification. In order to ascertain the ratio R of NDVIW to the satellite observed NDVI, a 20-year time-series MODIS NDVI dataset was utilized for decomposition to obtain the NDVIW component, and then the ratio R was calculated with the equation R = (NDVIW/NDVI) *100%, respectively, for forest (CC >60%), medium woodland (CC = 25–60%) and sparse woodland (CC 1–25%). Landsat TM and OLI images that had been orthorectified by the provider USGS were atmospherically corrected using the COST model and used to derive NDVIL. R was multiplied for the NDVIL image to extract the woody NDVI (NDVIWL) from Landsat data for each of these plots. The 45 plots of CC data were linearly fitted to the NDVIWL, and a model with CC = 103.843 NDVIW + 6.157 (R2 = 0.881) was obtained. This equation was applied to predict CC at the 18 verification plots and a good agreement was found (R2 = 0.897). This validated CC-NDVIW model was further applied to the woody NDVI of forest, medium woodland and sparse woodland derived from Landsat data for regional CC estimation. An independent group of 24 measured plots was utilized for validation of the results, and an accuracy of 83.0% was obtained. Thence, the developed model has high predictivity and is suitable for large-scale estimation of CC using high-resolution data.


2021 ◽  
Vol 13 (5) ◽  
pp. 948
Author(s):  
Lei Cui ◽  
Ziti Jiao ◽  
Kaiguang Zhao ◽  
Mei Sun ◽  
Yadong Dong ◽  
...  

Clumping index (CI) is a canopy structural variable important for modeling the terrestrial biosphere, but its retrieval from remote sensing data remains one of the least reliable. The majority of regional or global CI products available so far were generated from multiangle optical reflectance data. However, these reflectance-based estimates have well-known limitations, such as the mere use of a linear relationship between the normalized difference hotspot and darkspot (NDHD) and CI, uncertainties in bidirectional reflectance distribution function (BRDF) models used to calculate the NDHD, and coarse spatial resolutions (e.g., hundreds of meters to several kilometers). To remedy these limitations and develop alternative methods for large-scale CI mapping, here we explored the use of spaceborne lidar—the Geoscience Laser Altimeter System (GLAS)—and proposed a semi-physical algorithm to estimate CI at the footprint level. Our algorithm was formulated to leverage the full vertical canopy profile information of the GLAS full-waveform data; it converted raw waveforms to forest canopy gap distributions and gap fractions of random canopies, which was used to estimate CI based on the radiative transfer theory and a revised Beer–Lambert model. We tested our algorithm over two areas in China—the Saihanba National Forest Park and Heilongjiang Province—and assessed its relative accuracies against field-measured CI and MODIS CI products. We found that reliable estimation of CI was possible only for GLAS waveforms with high signal-to-noise ratios (e.g., >65) and at gentle slopes (e.g., <12°). Our GLAS-based CI estimates for high-quality waveforms compared well to field-based CI (i.e., R2 = 0.72, RMSE = 0.07, and bias = 0.02), but they showed less correlation to MODIS CI (e.g., R2 = 0.26, RMSE = 0.12, and bias = 0.04). The difference highlights the impact of the scale effect in conducting comparisons of products with huge differences resolution. Overall, our analyses represent the first attempt to use spaceborne lidar to retrieve high-resolution forest CI and our algorithm holds promise for mapping CI globally.


2017 ◽  
Vol 40 (1) ◽  
pp. 1-8
Author(s):  
Bhawna Adhikari ◽  
◽  
Bhawana Kapkoti ◽  
Neelu Lodhiyal ◽  
L.S. Lodhiyal ◽  
...  

Present study was carried out to assess the structure and regeneration of Sal forests in Shiwalik region of Kumaun Himalaya. Vegetation analysis and tree canopy density was determined by using quadrat and densitometer, respectively. Density of seedlings, saplings and trees was 490-14067, 37-1233, and 273-863 ind.ha-1 respectively. The basal area was 0.12-5.44 m2 ha-1 reported for saplings and 25.4-77.6 m2 ha-1 for trees. Regeneration of Sal was found good in Sal mixed dense forest followed by Sal open forest and Sal dense forest, respectively. Regeneration of Sal was assisted by the presence of associated tree species as well as the sufficient sunlight availability on ground due to adequate opening of canopy trees in Sal forest. Thus it is concluded that the density of tree canopy, sunlight availability and also associated tree species impacted the regeneration of Sal in the region.


Author(s):  
Claudius Speer ◽  
Christine Altenmüller-Walther ◽  
Jan Splitthoff ◽  
Christian Nusshag ◽  
Florian Kälble ◽  
...  

AbstractTo study the impact of glucocorticoid maintenance dose and treatment duration on outcomes in patients with AAV (ANCA-associated vasculitis) with emphasis on infectious complications. A total of 130 AAV patients from two German vasculitis centers diagnosed between August 2004 and January 2019 treated with cyclophosphamide and glucocorticoids for induction therapy and glucocorticoids for maintenance therapy were retrospectively enrolled. We investigated the influence of glucocorticoid maintenance therapy on patient survival, time to relapse, kidney function, infectious complications and irreversible physical damage. The patients were divided into the following groups: patients treated according to the predefined reduction scheme (< 7.5 mg) or patients treated with glucocorticoids ≥ 7.5 mg after 6 months. Compared to patients receiving < 7.5 mg glucocorticoids after 6 months, patients receiving $$\ge $$ ≥ 7.5 mg had an increased rate of infectious episodes per patient (1.7 vs. 0.6; p < 0.001), including urinary tract infection (p = 0.007), pneumonia (p = 0.003), opportunistic pneumonia (p = 0.022) and sepsis (p = 0.008). Especially pneumonia during the first 24 months after disease onset [hazard ratio, 3.0 (95% CI 1.5 − 6.1)] led to more deaths from infection (p = 0.034). Glucocorticoid maintenance therapy after 6 months had no impact on relapse rate or patient survival and decline in kidney function was comparable. Glucocorticoid maintenance therapy with $$\ge $$ ≥ 7.5 mg after 6 months is associated with more severe infectious complications leading to an increased frequency of deaths from infection. Glucocorticoid maintenance therapy has no effect on time to relapse or patient survival and should therefore be critically revised throughout the aftercare of AAV patients.


Sign in / Sign up

Export Citation Format

Share Document