Growth responses of seedlings of two neotropical pioneer species to simulated forest gap environments

1999 ◽  
Vol 15 (6) ◽  
pp. 827-839 ◽  
Author(s):  
J. W. Dalling ◽  
C. E. Lovelock ◽  
S. P. Hubbell

Traditional shade house experiments that expose plants to relatively uniform irradiance and light quality are inadequate to characterize the morphological, allocational and physiological plasticity that seedlings show to different gap environments. Here the design of a pot experiment is described that simulates the daily time course of irradiance and light quality in idealized gaps of six different sizes. Differences in response to gap size are illustrated using data from two pioneer species, Ochroma pyramidale, which recruits exclusively in large gaps and clearings, and Luehea seemannii, which colonizes small branchfall gaps as well as large gaps. Ochroma outperformed Luehea in relative growth rate in all except the smallest simulated gap size. Ochroma's superior performance in the larger gaps could be attributed to a larger proportional investment in leaf biomass (i.e. a higher leaf area ratio, LAR), and higher photosynthetic rates both on a leaf area and leaf mass basis. In the smallest simulated gaps LAR was not significantly different between the species, but Ochroma maintained a higher net assimilation rate. These results fail to support the suggestion that gap partitioning among pioneer species arises directly from morphological and biochemical specialization to particular gap light environments. Instead, it is suggested that partitioning may result from a trade-off between seedling growth and mortality determined by species allocational patterns and mediated by interactions with herbivores and pathogens.

Weed Science ◽  
1980 ◽  
Vol 28 (6) ◽  
pp. 735-740 ◽  
Author(s):  
D. T. Patterson

The growth responses of cogongrass [Imperata cylindrica(L.) Beauv.] were studied in a controlled-environment greenhouse with a day/night temperature of 29/23 C, under full available light and 56 and 11% of full light. The cogongrass plants were grown from stem and rhizome propagules originating from an interstate highway median, a pecan [Carya illinoensis(Wangenh.) K. Koch] plantation, and a pine (Pinusspp.) forest. After 89 days, the plants from all three populations produced, on average, three times as much total dry weight and leaf area in full available sunlight as in 56% full light and 20 times as much as in 11% full light. The distribution of plant biomass into rhizomes decreased with shading, whereas the distribution into leaves increased. The distribution of leaf biomass as leaf area also increased with shading, with the result that the plants grown in 11% full light had leaf area ratios about 2.5 times greater than those grown in full light. Reductions in dry matter production with shading were due to significant reductions in both net assimilation rate and leaf area duration or total amount of leaf area present. The plants from the shaded and exposed habitats generally did not differ significantly in their responses to shading. Thus, there is little evidence for the presence of sun and shade ecotypes in the populations of cogongrass studied.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yongran Ji ◽  
Theoharis Ouzounis ◽  
Henk J. Schouten ◽  
Richard G. F. Visser ◽  
Leo F. M. Marcelis ◽  
...  

The recent development of light-emitting diodes (LEDs) and their application in modern horticulture stimulated studies demonstrating that additional far-red (FR) radiation (700–800 nm) increases plant dry mass. This effect of FR has been explained by improved photosynthesis and/or plant architecture. However, the genotypic variation in this response is largely unknown. Here, we aim to explore and explain the genotypic variation in growth responses to additional FR. We expected the genotypic variation in the responses of plant dry mass to additional FR. Further, we hypothesized that a significant improvement of both net assimilation rate (NAR) and leaf area ratio (LAR) is responsible for a strong dry mass increase under additional FR, while some genotypes respond only marginally or even negatively in NAR or LAR under FR, thus resulting in a weak FR effect on plant dry mass. To test these hypotheses, we grew 33 different tomato genotypes for 21 days with 0, 25, or 100 μmol m–2 s–1 of FR added to a common white + red LED background lighting of 150 μmol m–2 s–1. Genotypes responded similarly with respect to plant height, stem dry mass, and shoot:root ratio; i.e., they all increased with increasing FR. However, the response of total plant dry mass varied among genotypes. We categorized the genotypes into three groups (strongly, moderately, and weakly responding groups) based on their relative response in total plant dry mass to FR. Growth component analysis revealed that the strongly responding genotypes increased strongly in NAR rather than LAR. The weakly responding genotypes, however, showed a substantial increase in LAR but not NAR. The increase in LAR was due to the increase in specific leaf area. Leaf mass fraction, which is the other component of LAR, decreased with FR and did not differ between groups. In conclusion, tomato genotypes that increased strongly in NAR in response to FR were able to achieve a more substantial increase in dry mass than did other genotypes. This is the first study to explain the differences in growth responses of a large number of tomato genotypes toward FR in their light environment.


2014 ◽  
Vol 32 (2) ◽  
pp. 205-212 ◽  
Author(s):  
Fánor Casierra-Posada ◽  
Esteban Zapata-Casierra ◽  
Daniel A. Chaparro-Chaparro

To determine the effects of light quality on the growth indices of plants, Pencas Blancas cultivar chard plantlets were grown for 2 months under five different light treatments, obtained by filtering sunlight through colored polyethylene films. The treatments included: red, blue, green, yellow and transparent cover colors. A transparent cover (white light) was used as the control. The colored covers affected the plant growth. The plants grown under the yellow cover presented a better behavior with regards to growth, taken as: total dry weight per plant, leaf area, specific leaf area, absolute growth rate, relative growth rate, harvestable dry matter and root to shoot ratio. The dry matter partitioning in the leaves and roots was affected by the light quality, but not in the petioles, with a higher accumulation of dry mass in the leaves of plants grown under the yellow cover. As a consequence of the enhanced leaf area in the plants under the yellow cover, they also had the highest water uptake. On the other hand, the highest net assimilation rate value was found in plants grown under the transparent cover. These results open up the possibility of using yellow colored cover in leafy green vegetables, especially in chard plants grown under controlled conditions.


1980 ◽  
Vol 7 (5) ◽  
pp. 511 ◽  
Author(s):  
DC Horsman ◽  
AO Nicholls ◽  
DM Calder

D. glomerata, L. perenne and P. aquatica were exposed to 9 parts per hundred million ozone for 4 h per day on 5 days per week for 5 weeks. The grasses responded similarly and significant changes in growth were generally observed only at the end of the exposure. The changes in growth were accompanied by slight leaf chlorosis. Total dry weight and yield (above-ground dry weight) were significantly reduced (14-21%) by the treatment. Root growth was impaired the most, followed by stem and then leaves. Specific leaf area was generally lower in ozone-treated plants but the difference was not significant. Effects on relative growth rate were mainly due to the decrease in net assimilation rate, leaf area ratio remaining relatively unchanged.


HortScience ◽  
1992 ◽  
Vol 27 (12) ◽  
pp. 1269-1271 ◽  
Author(s):  
J.C. Vlahos ◽  
G.F.P. Martakis ◽  
E. Heuvelink

The effects of supplementary irradiance (20 μmol·s-1·m-2 for 6 hours) with incandescent light (I) or fluorescent compact gas-discharge lamps (CF) vs. a basic irradiance (96 μmol·s-1·m-2 for 12 h) with fluorescent (F) light at 17 or 25C was studied for Achimenes hybrids `Flamenco', `Hilda', and `Rosenelfe'. The additional I increased leaf area (LA) and plant dry weight (DW) in `Hilda' and `Rosenelfe' and promoted stem elongation in all three cultivars. Additional F had no effect on DW. However, depending on cultivar, responses for LA varied. An increase in the number of flowers was promoted only in `Rosenelfe' by I and CF compared with the control. In all cultivars, the supplementary CF, when compared with the I, reduced LA and DW. LA was significantly larger and DW higher at higher temperature, except for `Rosenelfe', where DW was not influenced and LA was smaller at the higher temperature. All three cultivars produced a longer stem and more flowers at the higher temperature. Calculated growth responses were influenced by an interaction between temperature and cultivar.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 412
Author(s):  
Ivan Bjelanovic ◽  
Phil Comeau ◽  
Sharon Meredith ◽  
Brian Roth

A few studies in young mixedwood stands demonstrate that precommercial thinning of aspen at early ages can improve the growth of spruce and increase stand resilience to drought. However, information on tree and stand responses to thinning in older mixedwood stands is lacking. To address this need, a study was initiated in 2008 in Alberta, Canada in 14 boreal mixedwood stands (seven each at ages 17 and 22). This study investigated growth responses following thinning of aspen to five densities (0, 1000, 2500, 5000 stems ha−1 and unthinned (control)). Measurements were collected in the year of establishment, and three and eight years later. Mortality of aspen in the unthinned plots was greater than in the thinned plots which were not significantly different amongst each other. Eight years following treatment, aspen diameter was positively influenced by thinning, while there was no effect on aspen height. The density of aspen had no significant effect on the survival of planted spruce. Spruce height and diameter growth increased with both aspen thinning intensity and time since treatment. Differentiation among treatments in spruce diameter growth was evident three years from treatment, while differentiation in height was not significant until eight years following treatment. Yield projections using two growth models (Mixedwood Growth Model (MGM) and Growth and Yield Projection System (GYPSY)) were initialized using data from the year eight re-measurements. Results indicate that heavy precommercial aspen thinning (to ~1000 aspen crop trees ha−1) can result in an increase in conifer merchantable volume without reducing aspen volume at the time of harvest. However, light to moderate thinning (to ~2500 aspen stems ha−1 or higher), is unlikely to result in gains in either deciduous or conifer merchantable harvest volume over those of unthinned stands.


1997 ◽  
Vol 21 (2) ◽  
pp. 84-89 ◽  
Author(s):  
Steven E. McKeand ◽  
Robert P. Crook ◽  
H. Lee Allen

Abstract The lack of rank change in growth characteristics when open-pollinated families of loblolly pine (Pinus taeda L.) are planted on different sites in the Southeast has greatly simplified breeding for superior genotypes. Although family rank does not usually change, genotype by environment interactions (GxE) may be very important in operational deployment of families in regeneration programs. Using data from GxE trials and two site preparation-fertilization-herbicide trials, we estimated the growth that different families should achieve following application of these silvicultural practices. Better performing families tend to be most responsive to site changes (i.e. genetically unstable). Growth responses to silvicultural treatment will be overestimated if only the most responsive families are used in silvicultural research trials. Similarly, genetic gains will be overestimated if gain trials are planted on only the best sites or receive intensive culture. South. J. Appl. For. 21(2):84-89.


1975 ◽  
Vol 26 (3) ◽  
pp. 497 ◽  
Author(s):  
EAN Greenwood ◽  
P Farrington ◽  
JD Beresford

The time course of development of a lupin crop was studied at Bakers Hill, Western Australia. The aim was to gain insight into the crop factors influencing yield. Weekly measurements were made of numbers and weights of plant parts, and profiles of roots, leaf area and light interception. A profile of carbon dioxide in the crop atmosphere was taken at the time of maximum leaf area, and the net carbon dioxide exchange (NCE) of pods was estimated for three successive weeks. The crop took 10 weeks to attain a leaf area index (LAI) of 1 and a further 9 weeks to reach a maximum LAI of 3.75, at which time only 33% of daylight reached the pods on the main axis. Once the maximum LAI was attained at week 19, leaf fall accelerated and rapid grain filling commenced almost simultaneously on all of the three orders of axes which had formed pods. Measurements of NCE between pods on the main axis and the air suggest that the assimilation of external carbon dioxide by the pods contributed little to grain filling. Grain dry weight was 2100 kg ha-1 of which 30%, 60% and 10% came from the main axis, first and second order apical axes respectively. Only 23% of the flowers set pods and this constitutes an important physiological limitation to grain yield.


Author(s):  
MARGARYAN V.G. ◽  

The features of the thermal regime of the surface air layer in the Debed river basin are considered. A statistical analysis of the average annual and average seasonal values of air temperature from 1964 to 2018 was carried out, two periods were identified, their time course was shown. The analysis was carried out using data from six meteorological stations representing the lowland, mountain and high-mountain climatic zones of the Debed river basin. A correlation was obtained between the absolute altitude and the monthly average values of air temperature for January and July, which can be used to assess the thermal conditions of unexplored or poorly studied territories and for cartography. The time course of average values of air temperatures for the seasonal period has been studied. Analysis of trend lines of temporal changes in air temperatures shows that in all situations on the territory of the basin as a whole, there is a tendency of temperature growth. Moreover, with a range of interannual fluctuations, a break in the course of temperatures in the early to mid 1990 is clearly visible, after which their significant increase began. It turned out that a significant increase in seasonal temperatures is observed especially over the period 1993-2018, which means that the annual warming after the mid 1990 occurred primarily due to summer and spring seasons. The regular dynamics indicates that in the studied area in terms of temperatures, a tendency of softening winters, a decrease in the water content of rivers, aridization of the climate. The results obtained can be used to assess the regularities of the spatial-temporal distribution of the temperature of the study area, to clarify the thermal balance, for the rational use of heat resources, as well as in the development of strategic programs for longterm analysis.


Sign in / Sign up

Export Citation Format

Share Document