scholarly journals A Voyage Towards the South Pole

1973 ◽  
Vol 26 (3) ◽  
pp. 373-377

Dr. David Lewis, a Fellow of this Institute and occasional contributor to the Journal, arrived at Palmer Station in the Antarctic, under jury rig, on 29 January having left Sydney on 20 October 1972 and stopped twenty-four hours at Stewart Island, N.Z., on the way. His long-term objective is to circumnavigate the Antarctic Continent, single-handed. He was twice capsized, in the course of which his gloves disappeared which resulted in badly frost-bitten fingers. After two months day and night in insulated boots, the warmth in the U.S. base when he arrived made his feet balloon and crack.

Author(s):  
Paolo Bernat

100 years ago, Antarctica was still mostly unknown and unexplored. The first landings on the Antarctic coast took place in the early decades of the nineteenth century and were made by whalers and sealers. In the following years the first scientific expeditions began and European and US expeditions started the geographical discovery and the mapping of the Antarctic coasts. But it was only in the years 1911-1912 that two expeditions, very different but equally well prepared, arrived almost simultaneously at the South Pole. The events that happened in the Antarctic together with the different nature of the two leaders Roald Amundsen and Robert Scott determined the outcome of these expeditions and the fate of their teams. The centenary of the conquest of the South Pole (December 14, 1911) is an opportunity to remember the passion for science, the spirit of adventure and the fierce perseverance that characterized those extraordinary men and that even now form the basis of scientific research and of human progress, not only in Antarctica but in all areas of knowledge and life.


Author(s):  
Claudio Smiraglia

The Antarctic continent is certainly made an "awful" place by its harsh climate: in the past, explorers and researchers endured terrible hardships and the climate remains a challenge today, in spite of the many improvements in knowledge and technology. The Antarctic may be termed "the continent of the extremes", as it occupies an area unlike any other on earth. It is the farthest and most inaccessible and isolated continent; the most regular because of its rounded shape, with the South Pole at the centre; the coldest continent, with temperatures falling to -90°C; the driest (with an average of 130 mm of precipitation); the windiest, the highest, the most glacialized (it contains 91% of the volume of the earth’s ice). It also displays the most monotonous landscapes and presents the greatest contrast between marine and terrestrial ecosystems. But the Antarctic is also "extreme" because it is the least populated continent, with no indigenous population at all, while its few settlements (consisting in scientific bases) are concentrated on the coast; it is the only place that does not belong to one nation, but to all the world; it is the place where unique information on the past, present and future of humankind is revealed.


Author(s):  
David Beerling

By arriving at the South Pole on 14 December 1911, the Norwegian explorer Roald Amundsen (1872–1928) reached his destination over a month ahead of the British effort led by Captain Robert Falcon Scott (1868–1912). As Scott’s party approached the South Pole on 17 January 1912, they were devastated to see from afar the Norwegian’s black flag. On arrival, they discovered the remains of his camp with ski and sledge tracks, and numerous dog footprints. Amundsen, it turned out, had used dogs and diversionary tactics to secure victory while the British team had man-hauled their sledges. These differences were not lost on The Times in London, which marked the achievement with muted praise, declaring it ‘not quite in accordance with the spirit of fair and open competition which hitherto marked Antarctic exploration’. Exhausted, Scott and his men spent time the following day making scientific observations around the Pole, erected ‘our poor slighted Union Jack’, and photographed themselves in front of it (Plate 11). Lieutenant Bowers took the picture by pulling a string to activate the shutter. It is perhaps the most well known, and at the same time the saddest picture, of the entire expedition—a poignant image of the doomed party, all of whom look utterly fed up as if somehow sensing the fate awaiting them. The cold weather, icy wind, and dismal circumstances led Scott to acerbically remark in his diary: ‘Great god! This is an awful place and terrible enough to have laboured to it without the reward of priority.’ By this time, the party had been hauling their sledges for weeks, and all the men were suffering from dehydration, owing to fatigue and altitude sickness from being on the Antarctic plateau that sits nearly 3000m above sea level. Three of them, Captain Oates, Seaman Evans, and Bowers, were badly afflicted with frostbitten noses and cheeks. Ahead lay the return leg, made all the more unbearable by the crippling psychological blow of knowing they had been second to the Pole. After a gruelling 21-day trek in bitterly cold summit winds, the team reached their first cache of food and fuel, covering the distance six days faster than it had taken them to do the leg in the other direction.


Polar Record ◽  
2013 ◽  
Vol 50 (3) ◽  
pp. 277-283
Author(s):  
John Evans ◽  
Philip M. Smith

ABSTRACTThe full extent of the height and scale of the Sentinel Range, Antarctica, was not known until reconnaissance flights and scientific traverses in the International Geophysical Year (IGY), 1957–1958. These explorations revealed the range to be twenty miles in length, with a large number of high peaks culminating in Mt. Vinson, the highest on the Antarctic continent at nearly 4900 meters. The discoveries captured the interest of the U.S. and world mountaineering communities setting off a competition to achieve the first climb of Vinson. The challenge was tempered only by the range's remoteness from the coast of Antarctica and the formidable logistics of mounting a mountaineering expedition. The US which had the most advanced ski-equipped cargo aircraft, had an established post-IGY policy that prohibited adventure expeditions that could divert logistic resources from the scientific programme. This paper discusses Mt. Vinson competition within the US and international climbing communities, mounting national pressures to achieve the first climb, and a reversal in policy by the US Antarctic Policy Group that resulted in the 1966–1967 American Antarctic Mountaineering Expedition's first ascents of Vinson and five other high peaks. Today, between 100 and 200 persons climb Mt. Vinson each austral summer.


2015 ◽  
Vol 28 (15) ◽  
pp. 5922-5934 ◽  
Author(s):  
Naiming Yuan ◽  
Minghu Ding ◽  
Yan Huang ◽  
Zuntao Fu ◽  
Elena Xoplaki ◽  
...  

Abstract In this study, observed temperature records of 12 stations from Antarctica island, coastline, and continental areas are analyzed by means of detrended fluctuation analysis (DFA). After Monte Carlo significance tests, different long-term climate memory (LTM) behaviors are found: temperatures from coastal and island stations are characterized by significant long-term climate memory whereas temperatures over the Antarctic continent behave more like white noise, except for the Byrd station, which is located in the West Antarctica. It is argued that the emergence of LTM may be dominated by the interactions between local weather system and external slow-varying systems (ocean), and therefore the different LTM behaviors between temperatures over the Byrd station and that over other continental stations can be considered as a reflection of the different climatic environments between West and East Antarctica. By calculating the trend significance with the effect of LTM taken into account, and further comparing the results with those obtained from assumptions of autoregressive (AR) process and white noise, it is found that 1) most of the Antarctic stations do not show any significant trends over the past several decades, and 2) more rigorous trend evaluation can be obtained if the effect of LTM is considered. Therefore, it is emphasized that for air temperatures over Antarctica, especially for the Antarctica coastline, island, and the west continental areas, LTM is nonnegligible for trend evaluation.


1988 ◽  
Vol 26 (1) ◽  
pp. 63 ◽  
Author(s):  
E. Robinson ◽  
B. A. Bodhaine ◽  
W. D. Komhyr ◽  
S. J. Oltmans ◽  
L. P. Steele ◽  
...  

Polar Record ◽  
1996 ◽  
Vol 32 (180) ◽  
pp. 25-42 ◽  
Author(s):  
Klaus J. Dodds

AbstractThe South African state has never made a formal claim to the Antarctic continent. In the inter-war period, the South African government prepared a number of memorandums and discussion papers on the subject of a ‘South African sector in the Antarctic.’ This paper not only critically interprets those government papers, but, more importantly, assesses the reasons why South Africa never made a formal claim. It is suggested that relations with Britain and the Empire, as well as the activities of Norway and the United States, were crucial determining factors. Finally, the implications for later South African involvement in the South Atlantic and the Antarctic Treaty System are briefly considered.


2017 ◽  
Author(s):  
Barbara Stenni ◽  
Mark A. J. Curran ◽  
Nerilie J. Abram ◽  
Anais Orsi ◽  
Sentia Goursaud ◽  
...  

Abstract. Climate trends in the Antarctic region remain poorly characterised, owing to the brevity and scarcity of direct climate observations and the large magnitude of interannual to decadal-scale climate variability. Here, within the framework of the PAGES Antarctica 2k working group, we build an enlarged database of ice core water stable isotope records from Antarctica, consisting of 112 records. We produce both unweighted and weighted isotopic (δ18O) composites and temperature reconstructions since 0 CE, binned at 5 and 10-year resolution, for 7 climatically-distinct regions covering the Antarctic continent. Following earlier work of the Antarctica 2k working group, we also produce composites and reconstructions for the broader regions of East Antarctica, West Antarctica, and the whole continent. We use three methods for our temperature reconstructions: i) a temperature scaling based on the δ18O-temperature relationship output from an ECHAM5-wiso model simulation nudged to ERA-interim atmospheric reanalyses from 1979 to 2013, and adjusted for the West Antarctic Ice Sheet region to borehole temperature data; ii) a temperature scaling of the isotopic normalized anomalies to the variance of the regional reanalysis temperature and iii) a composite-plus-scaling approach used in a previous continental scale reconstruction of Antarctic temperature since 1 CE but applied to the new Antarctic ice core database. Our new reconstructions confirm a significant cooling trend from 0 to 1900 CE across all Antarctic regions where records extend back into the 1st millennium, with the exception of the Wilkes Land coast and Weddell Sea coast regions. Within this long-term cooling trend from 0–1900 CE we find that the warmest period occurs between 300 and 1000 CE, and the coldest interval from 1200 to 1900 CE. Since 1900 CE, significant warming trends are identified for the West Antarctic Ice Sheet, the Dronning Maud Land coast and the Antarctic Peninsula regions, and these trends are robust across the distribution of records that contribute to the unweighted isotopic composites and also significant in the weighted temperature reconstructions. Only for the Antarctic Peninsula is this most recent century-scale trend unusual in the context of natural variability over the last 2000-years. However, projected warming of the Antarctic continent during the 21st Century may soon see significant and unusual warming develop across other parts of the Antarctic continent. The extended Antarctica 2k ice core isotope database developed by this working group opens up many avenues for developing a deeper understanding of the response of Antarctic climate to natural and anthropogenic climate forcings. The first long-term quantification of regional climate in Antarctica presented herein is a basis for data-model comparison and assessments of past, present and future driving factors of Antarctic climate.


2002 ◽  
Vol 19 (3) ◽  
pp. 328-336 ◽  
Author(s):  
J. S. Lawrence ◽  
M. C. B. Ashley ◽  
M. G. Burton ◽  
P. G. Calisse ◽  
J. R. Everett ◽  
...  

AbstractThe near infrared sky spectral brightness has been measured at the South Pole with the Near Infrared Sky Monitor (NISM) throughout the 2001 winter season. The sky is found to be typically more than an order of magnitude darker than at temperate latitude sites, consistent with previous South Pole observations. Reliable robotic operation of the NISM, a low power, autonomous instrument, has been demonstrated throughout the Antarctic winter. Data analysis yields a median winter value of the 2.4μm (Kdark) sky spectral brightness of ˜120μJy arcsec−2 and an average of 210 ± 80μJy arcsec−2. The 75%, 50%, and 25% quartile values are 270 ± 100, 155 ± 60, and 80 ± 30μJy arcsec−2, respectively.


Sign in / Sign up

Export Citation Format

Share Document