A cellular automaton-based model of ship traffic flow in busy waterways

2021 ◽  
pp. 1-14
Author(s):  
Le Qi ◽  
Yuanyuan Ji ◽  
Robert Balling ◽  
Wenhai Xu

Abstract In busy waterways, spatial-temporal discretisation, safe distance and collision avoidance timing are three of the core components of ship traffic flow modelling based on cellular automata. However, these components are difficult to determine in ship traffic simulations because the size, operation and manoeuvrability vary between ships. To solve these problems, a novel traffic flow model is proposed. Firstly, a spatial-temporal discretisation method based on the concept of a standard ship is presented. Secondly, the update rules for ships’ motion are built by considering safe distance and collision avoidance timing, in which ship operation and manoeuvrability are thoroughly considered. We demonstrate the effectiveness of our model, which is implemented through simulating ship traffic flow in a waterway of the Yangtze River, China. By comparing the results with actual observed ship traffic data, our model shows that the behaviours and the characteristics of ships’ motions can be represented very well, which also can be further used to reveal the mechanism that affects the efficiency and safety of ship traffic.

2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Ting Liu ◽  
Gabriel Lodewijks

Abstract Abstract On the basis of the influence of dry season on ship traffic flow, the gathering and dissipating process of ship traffic flow was researched with Greenshields linear flow—density relationship model, the intrinsic relationship between the ship traffic congestion state and traffic wave in the unclosed restricted channel segment was emphatically explored when the ship traffic flow in a tributary channel inflows, and the influence law of multiple traffic waves on the ship traffic flow characteristics in unclosed restricted segment is revealed. On this basis, the expressions of traffic wave speed and direction, dissipation time of queued ships and the number of ships affected were provided, and combined with Monte Carlo method, the ship traffic flow simulation model in the restricted channel segment was built. The simulation results show that in closed restricted channel segment the dissipation time of ships queued is mainly related to the ship traffic flow rate of segments A and C, and the total number of ships affected to the ship traffic flow rate of segment A. And in unclosed restricted channel segment, the dissipation time and the total number of ships affected are also determined by the meeting time of the traffic waves in addition to the ship traffic flow rate of segments. The research results can provide the theoretical support for further studying the ship traffic flow in unclosed restricted channel segment with multiple tributaries Article Highlights The inflow of tributaries' ship traffic flows has an obvious impact on the traffic conditions in the unenclosed restricted channel segment. The interaction and influence between multiple ship traffic waves and the mechanism of generating new traffic waves are explained. The expression of both dissipation time of queued ships and the total number of ships affected in the closed and unclosed restricted channel segment are given.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1221
Author(s):  
Anum Mushtaq ◽  
Irfan ul Haq ◽  
Wajih un Nabi ◽  
Asifullah Khan ◽  
Omair Shafiq

Connected Autonomous Vehicles (AVs) promise innovative solutions for traffic flow management, especially for congestion mitigation. Vehicle-to-Vehicle (V2V) communication depends on wireless technology where vehicles can communicate with each other about obstacles and make cooperative strategies to avoid these obstacles. Vehicle-to-Infrastructure (V2I) also helps vehicles to make use of infrastructural components to navigate through different paths. This paper proposes an approach based on swarm intelligence for the formation and evolution of platoons to maintain traffic flow during congestion and collision avoidance practices using V2V and V2I communications. In this paper, we present a two level approach to improve traffic flow of AVs. At the first level, we reduce the congestion by forming platoons and study how platooning helps vehicles deal with congestion or obstacles in uncertain situations. We performed experiments based on different challenging scenarios during the platoon’s formation and evolution. At the second level, we incorporate a collision avoidance mechanism using V2V and V2I infrastructures. We used SUMO, Omnet++ with veins for simulations. The results show significant improvement in performance in maintaining traffic flow.


2021 ◽  
Author(s):  
Christian Siebke ◽  
◽  
Maximilian Bäumler ◽  
Madlen Ringhand ◽  
Marcus Mai ◽  
...  

As part of the AutoDrive project, OpenPASS is used to develop a cognitive-stochastic traffic flow simulation for urban intersection scenarios described in deliverable D1.14. The deliverable D4.20 is about the design of the modules for the stochastic traffic simulation. This initially includes an examination of the existing traffic simulations described in chapter 2. Subsequently, the underlying tasks of the driver when crossing an intersection are explained. The main part contains the design of the cognitive structure of the road user (chapter 4.2) and the development of the cognitive behaviour modules (chapter 4.3).


Author(s):  
R Fışkın ◽  
E Nasibov ◽  
M O Yardımcı

Most of the accidents are caused by human error at sea so, decision making process made by navigators should be more computerised and automated. The supported decision making can be a step forward to decrease the risk of collision. This paper, in this respect, aims to present a deterministic approach to support optimum collision avoidance trajectory. This approach involves a collision avoidance course alteration. A web-based application coded with "JavaScript" programming language on the "Processing" software platform which allows the own ship to change her course in a deterministic manner to avoid collision optimally has been introduced. Algorithm structure of the method has been formulated and organized according to the International Regulation for Preventing Collision at Sea (COLREGs). The experimental tests results have revealed that the system is practicable and feasible and considerably outperforms heuristic-based method. It is thought that the developed method can be applied in an intelligent avoidance system on board and provides contribution to ship collision avoidance process, automation of ship motion control and ship traffic engineering.


2018 ◽  
Vol 2018 ◽  
pp. 1-5
Author(s):  
Tao Wang ◽  
Jing Zhang ◽  
Guangyao Li ◽  
Keyu Xu ◽  
Shubin Li

In the traditional optimal velocity model, safe distance is usually a constant, which, however, is not representative of actual traffic conditions. This paper attempts to study the impact of dynamic safety distance on vehicular stream through a car-following model. Firstly, a new car-following model is proposed, in which the traditional safety distance is replaced by a dynamic term. Then, the phase diagram in the headway, speed, and sensitivity spaces is given to illustrate the impact of a variable safe distance on traffic flow. Finally, numerical methods are conducted to examine the performance of the proposed model with regard to two aspects: compared with the optimal velocity model, the new model can suppress traffic congestion effectively and, for different safety distances, the dynamic safety distance can improve the stability of vehicular stream. Simulation results suggest that the new model is able to enhance traffic flow stability.


2006 ◽  
Vol 39 (3) ◽  
pp. 345-350
Author(s):  
Violina IORDANOVA ◽  
Hassane ABOUAÏSSA ◽  
Daniel JOLLY

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 954
Author(s):  
Abhijeet Ravankar ◽  
Ankit A. Ravankar ◽  
Arpit Rawankar ◽  
Yohei Hoshino

In recent years, autonomous robots have extensively been used to automate several vineyard tasks. Autonomous navigation is an indispensable component of such field robots. Autonomous and safe navigation has been well studied in indoor environments and many algorithms have been proposed. However, unlike structured indoor environments, vineyards pose special challenges for robot navigation. Particularly, safe robot navigation is crucial to avoid damaging the grapes. In this regard, we propose an algorithm that enables autonomous and safe robot navigation in vineyards. The proposed algorithm relies on data from a Lidar sensor and does not require a GPS. In addition, the proposed algorithm can avoid dynamic obstacles in the vineyard while smoothing the robot’s trajectories. The curvature of the trajectories can be controlled, keeping a safe distance from both the crop and the dynamic obstacles. We have tested the algorithm in both a simulation and with robots in an actual vineyard. The results show that the robot can safely navigate the lanes of the vineyard and smoothly avoid dynamic obstacles such as moving people without abruptly stopping or executing sharp turns. The algorithm performs in real-time and can easily be integrated into robots deployed in vineyards.


2021 ◽  
Author(s):  
Haoxuan Zhou ◽  
Yi Zuo ◽  
Tieshan Li ◽  
Shanshan Li
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document