scholarly journals Conference of Plenipotentiaries of the Coastal States of the Mediterranean Region on the Protection of the Mediterranean Sea, held in Barcelona, Spain, 2–16 February 1976

1976 ◽  
Vol 3 (2) ◽  
pp. 152-153 ◽  
Author(s):  
Peter S. Thacher
Author(s):  
Sarah Davis-Secord

Sicily is a lush and culturally rich island at the center of the Mediterranean Sea. Throughout its history, the island has been conquered and colonized by successive waves of peoples from across the Mediterranean region. In the early and central Middle Ages, the island was ruled and occupied in turn by Greek Christians, Muslims, and Latin Christians. This book investigates Sicily's place within the religious, diplomatic, military, commercial, and intellectual networks of the Mediterranean by tracing the patterns of travel, trade, and communication among Christians (Latin and Greek), Muslims, and Jews. By looking at the island across this long expanse of time and during the periods of transition from one dominant culture to another, the book uncovers the patterns that defined and redefined the broader Muslim–Christian encounter in the Middle Ages. Sicily was a nexus for cross-cultural communication not because of its geographical placement at the center of the Mediterranean but because of the specific roles the island played in a variety of travel and trade networks in the Mediterranean region.


2020 ◽  
Author(s):  
Iuliana Vasiliev ◽  
Daniela Boehn ◽  
Darja Volkovskaja ◽  
Clemens Schmitt ◽  
Konstantina Agiadi ◽  
...  

<p>Between 5.97-5.33 Ma several kilometre-thick evaporite units were deposited in the Mediterranean Basin during the Messinian Salinity Crisis (MSC). The MSC reflects a period featured by a negative hydrological budget, with a net evaporative loss of water exceeding precipitation and riverine runoff. The contemporary changes in continental and marine circum-Mediterranean temperature are, however, poorly constrained. Here we reconstruct continental mean annual temperatures (MAT) using branched glycerol dialkyl glycerol tetraether (GDGT) biomarkers for the time period corresponding to MSC Stage 3 (5.55-5.33 Ma). Additionally, for the same time interval, we estimate sea surface temperatures (SSTs) of the Mediterranean Sea using isoprenoidal GDGTs based TEX<sub>86</sub> proxy. The excellently preserved organic biomarkers were extracted from outcrops and DSDP cores spread over a large part of the onland (Malaga, Sicily, Cyprus) and offshore (holes 124 and 134 from the Balearic abyssal plane and hole 374 from the Ionian Basin) Mediterranean Basin domain. The calculated MATs for the 5.55 to 5.33 Ma interval show values around 16 to 18 ºC for the Malaga, Sicily and Cyprus outcrops. The MAT values calculated for DSDP Leg 13 holes 124, 134 and Leg 42A hole 374 are lower, around 11 to 13 ºC.</p><p>For samples where the branched and isoprenoid tetraether (BIT) index was lower than the 0.4 we could calculate TEX<sub>86</sub> derived SSTs averaging around 27 ºC for all sampled locations. Where available (i.e. Sicily), we compared the TEX<sub>86</sub> derived SSTs with alkenone based, U<sup>k</sup><sub>37</sub> derived SST estimates from the same samples. The TEX<sub>86</sub> derived SST values are slightly higher than the U<sup>k</sup><sub>37</sub> derived SST of 20 to 28 ºC. For the Mediterranean region, values between 19 and 27 ºC of the U<sup>k</sup><sub>37</sub> derived SSTs were calculated for the interval between the 8.0 and 6.4 Ma (Tzanova et al., 2015), close to our calculations for Sicily section (20 to 28 ºC). Independent of common pitfalls that may arise in using molecular biomarkers as temperature proxies, both SST estimates independently hint towards much warmer Mediterranean Sea water during the latest phase (Stage 3) of the MSC. These elevated temperatures coincide with higher δD values measured on alkenones and long chain n-alkanes (both records indicating for more arid and/or warmer conditions than today between 5.55 and 5.33 Ma). We therefore conclude that the climate between 5.55 to 5.33 Ma was warmer than present-day conditions, recorded both in the Mediterranean Sea and the land surrounding it.</p>


2014 ◽  
Vol 2 (4) ◽  
pp. 2813-2849
Author(s):  
I. Marchesini ◽  
F. Ardizzone ◽  
M. Alvioli ◽  
M. Rossi ◽  
F. Guzzetti

Abstract. We used landslide information for 13 study areas in Italy and morphometric information obtained from the 3 arc-second SRTM DEM to determine areas where landslide susceptibility is expected to be null or negligible in Italy, and in the landmasses surrounding the Mediterranean Sea. The morphometric information consisted in the local terrain slope computed in a square 3 × 3 cell moving window, and in the regional relative relief computed in a circular 15 × 15 cell moving window. We tested three different models to determine the non-susceptible landslide areas, including a linear model (LR), a quantile linear model (QLR), and a quantile non-linear model (QNL). We tested the performance of the three models using independent landslide information represented by the Italian Landslide Inventory (Inventario Fenomeni Franosi in Italia – IFFI). Best results were obtained using the QNL model. The corresponding zonation of non-susceptible landslide areas was intersected in a GIS with geographical census data for Italy. The result allowed determining that 57.5% of the population of Italy (in 2001) was located in areas where landslide susceptibility is expected to be null or negligible, and that the remaining 42.5% was located in areas where some landslide susceptibility is expected. We applied the QNL model to the landmasses surrounding the Mediterranean Sea, and we tested the synoptic non-susceptibility zonation using independent landslide information for three study areas in Spain. Results proved that the QNL model was capable of determining where landslide susceptibility is expected to be negligible in the Mediterranean area. We expect our results to be applicable in similar study areas, facilitating the identification of non-susceptible and susceptible landslide areas, at the synoptic scale.


2008 ◽  
Vol 17 ◽  
pp. 87-91 ◽  
Author(s):  
A. V. Mehta ◽  
S. Yang

Abstract. Climatological features of mesoscale rain activities over the Mediterranean region between 5° W–40° E and 28° N–48° N are examined using the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 2A25 rain products. The 3B42 rainrates at 3-hourly, 0.25°×0.25° spatial resolution for the last 10 years (January 1998 to July 2007) are used to form and analyze the 5-day mean and monthly mean climatology of rainfall. Results show considerable regional and seasonal differences of rainfall over the Mediterranean Region. The maximum rainfall (3–5 mm day−1) occurs over the mountain regions of Europe, while the minimum rainfall is observed over North Africa (~0.5 mm day−1). The main rainy season over the Mediterranean Sea extends from October to March, with maximum rainfall occurring during November–December. Over the Mediterranean Sea, an average rainrate of ~1–2 mm day−1 is observed, but during the rainy season there is 20% larger rainfall over the western Mediterranean Sea than that over the eastern Mediterranean Sea. During the rainy season, mesoscale rain systems generally propagate from west to east and from north to south over the Mediterranean region, likely to be associated with Mediterranean cyclonic disturbances resulting from interactions among large-scale circulation, orography, and land-sea temperature contrast.


Author(s):  
MELITA MOKOS ◽  
MARIA TH. CHEIMONOPOULOU ◽  
PANAYOTA KOULOURI ◽  
MONICA PREVIATI ◽  
GIULIA REALDON ◽  
...  

Ocean Literacy (OL) has been defined as an understanding of the ocean’s influence on people and their influence on the ocean. The OL movement was born in the US and its framework consisted of seven essential principles and 45 fundamental concepts; it is now largely accepted worldwide for use in both formal (schools and universities) and non-formal (research institutes, aquaria, museums, etc.) education settings. Based on this framework, marine scientists and educators developed the “Mediterranean Sea Literacy” (MSL) guide adapted to the specificities of the Mediterranean region, presented here. The MSL principles (7) and concepts (43), serving as guidance for research, education, informed decision-making, and improved citizens’ lifestyles, aim to contribute to environmental protection, conservation, and restoration of the Mediterranean Sea as well as to help to achieve a blue innovative and sustainable economy.


2017 ◽  
Vol 43 (2) ◽  
pp. 1064
Author(s):  
K. Thomopoulos ◽  
M. Geraga ◽  
E. Fakiris ◽  
G. Papatheodorou ◽  
G. Ferentinos

he aim of the present study is the reconstruction of the palaeoclimatic and palaeoceanographic evaluation of the Mediterranean Sea over the last 18ka based on the distribution of the planktonic foraminifera species. Planktonic foraminifera species have been proven excellent indicators of the palaeoclimatic and palaeoceanographic variability. The data set of the present study consists of the variability in the abundances of planktonic foraminifera species as has been reported and published in previous studies, after the examination of marine sediments from cores selected all over the Mediterranean Sea. The evolution in the abundance of each planktonic species is examined on a time interval spacing of 1000years suggesting implications for the palaeoclimatic and palaeoceanographic evolution of the Mediterranean Sea for the same time sampling interval (1000yrs). The most pronounced results of this study suggest that: (i) the increase in surface temperature during the warm intervals always follow a decreasing trend from eastern to western areas, (ii) the eutrophication of the Mediterranean Sea in most of the time exhibits a decreasing trend from northern to southern areas, and (iii) during the Holocene two cool spells (at around 8ka and 4ka) seems that had affected the majority of the Mediterranean region.


2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
Jean-Marie Beckers

Abstract. The goal of the present work is to provide the scientific community with a high-resolution Atlas of temperature and salinity for the Mediterranean Sea based on the most recent datasets available and contribute to the studies of the long-term variability in the region. Data from the Pan-European Marine Data Infrastructure SeaDataNet were used, the most complete and, to our best knowledge, of best quality dataset for the Mediterranean Sea as of today. The dataset is based on in situ measurements acquired between 1900–2015. The Atlas consists of horizontal gridded fields produced by the Data Interpolating Variational Analysis, where unevenly spatial distributed measurements were interpolated onto a 1/8° x 1/8° regular grid on 31 depth levels. Seven different types of climatological fields were prepared with different temporal integration of observations. Monthly, seasonal and annual climatological fields have been calculated for all the available years, seasonal to annual climatologies for overlapping decades and specific periods. The seasonal and decadal time frames have been chosen in accordance with the regional variability and in coherence with atmospheric indices. The decadal and specific periods analysis was not extended to monthly resolution due to the lack of data, especially for the salinity. The Data Interpolating Variational Analysis software has been used in the Mediterranean Region for the SeaDataNet and its predecessor Medar/Medatlas Climatologies. In the present study, a more advanced optimization of the analysis parameters was performed in order to produce more detailed results. The Mediterranean Region past and present states have been extensively studied and documented in a series of publications. The purpose of this Atlas is to contribute to these climatological studies and get a better understanding of the variability on time scales from month to decades and longer. Our gridded fields provide a valuable complementary source of knowledge in regions where measurements are scarce, especially in critical areas of interest such as the Marine Strategy Framework Directive (MSFD) regions. The dataset used for the preparation of the Atlas is available from https://doi.org/10.12770/8c3bd19b-9687-429c-a232-48b10478581c.


2021 ◽  
Author(s):  
Damián Insua Costa ◽  
Gonzalo Miguez-Macho ◽  
María Carmen Llasat

<p>The Western Mediterranean region (WMR) is usually affected by heavy rainfall, which has been extensively studied in the past because of the enormous impact it causes. However, there is still an open question related to these potentially catastrophic episodes: does the water vapour that feeds precipitation actually come from the Mediterranean Sea? Several studies have pointed to a significant contribution from other moisture sources, but the debate remains open because only a few case studies with disparate findings have been analysed so far. Here we use the Weather Research and Forecasting (WRF) model with a coupled moisture tagging capability to simulate over one hundred cases of extreme precipitation in the WMR. In order to detect possible remote moisture sources, we use a domain that covers almost the entire northern hemisphere. Preliminary results show that, although the contribution from the Mediterranean Sea is crucial, the combined contribution from more distant sources in the tropical, subtropical and north Atlantic is higher on average. In some specific cases, a significant part of the humidity may come from sources as far away as the Pacific Ocean. Our findings suggest that when explaining WMR torrential rainfall episodes, the Mediterranean Sea should be generally understood as a precipitation enhancer rather than the main contributor to precipitation.</p>


2011 ◽  
Vol 11 (4) ◽  
pp. 1163-1178 ◽  
Author(s):  
F. Duffourg ◽  
V. Ducrocq

Abstract. In the Northwestern Mediterranean region, large amounts of precipitation can accumulate over the coasts in less than a day. The present study aims at characterising the origin and the pathways of the moisture feeding such heavy precipitation. The ten Heavy Precipitating Events (HPEs) that occurred over the French Mediterranean region during the autumns of 2008 and 2009 are simulated with the non-hydrostatic research numerical model Meso-NH at 2.5 km, 10 km and 40 km horizontal resolution. Using eulerian on-line passive tracers, high-resolution simulations (2.5 km horizontal resolution) show that the heavy precipitating systems are fed by a south-southwesterly to easterly low-level moist flow. It is typically 1000 m deep and remains almost unchanged all along an event. This low-level feeding flow crosses the most northwestern part of the Mediterranean in 5 to 10 h. Larger-scale simulations (40 km and 10 km horizontal resolution) show that the moisture of the low-level feeding flow is provided by both evaporation of the Mediterranean Sea within the last 2 days before the HPE triggering and transport from remote sources in the lower half of the troposphere over more than 3 to 4 days. Local Mediterranean moisture is gained along the air mass low-level progress towards the Northwestern Mediterranean basin following two main branches along the Spanish coast and west of Sardinia. The Mediterranean Sea is the main moisture source when anticyclonic conditions prevail during the last 3 or 4 days before the HPE. When cyclonic conditions prevail before the HPE, the relative contribution of local and remote sources is more balanced. Remote moisture comes most of the time from the Atlantic Ocean. African tropical moisture is a less frequent but larger remote source.


Sign in / Sign up

Export Citation Format

Share Document