Effect of Inter-Particle Sintering on the Microstructure of γ Fe2O3

Author(s):  
K. H. Olsen ◽  
J. W. Cox

The use of γ Fe2O3 as a magnetic recording pigment is well known. Most commonly it is prepared by dehydration of the ∝ FeOOH to ∝ Fe2O3, reduction of ∝ Fe2O3 in hydrogen or other reducing gas to Fe3O4 and finally oxidation of the Fe3O4 to γ Fe2O3.Because of the known influence of grain boundaries on magnetic domains, a knowledge of the microstructure of the individual magnetic particles is important in theoretical considerations of switching mechanisms. Literature references disagree on the microstructure of γ Fe2O3. Some investigators claim the individual particles are essentially single crystalline ; others claim the particles are polycrystalline. In the present work, we have found no evidence that sub-grains are nucleated during the structural transformations of ∝ Fe2O3 to γ Fe2O3. Rather we have found that the single crystalline character of the starting ∝ FeOOH is preserved through the conversion to γ Fe2O3.

2020 ◽  
Vol 86 (1) ◽  
pp. 38-43
Author(s):  
Vladimir A. Kim ◽  
Valeriya V. Lysenko ◽  
Anna A. Afanaseva ◽  
Khasan I. Turkmenov

Structural degradation of the material upon long-term thermal and force impacts is a complex process which includes migration of the grain boundaries, diffusion of the active elements of the external and technological environment, hydrogen embrittlement, aging, grain boundary corrosion and other mechanisms. Application of the fractal and multifractal formalism to the description of microstructures opens up wide opportunities for quantitative assessment of the structural arrangement of the material, clarifies and reveals new aspects of the known mechanisms of structural transformations. Multifractal parameterization allows us to study the processes of structural degradation from the images of microstructures and identify structural changes that are hardly distinguishable visually. Any quantitative structural indicator can be used to calculate the multifractal spectra of the microstructure, but the most preferable is that provides the maximum range of variation in the numerical values of the multifractal components. The results of studying structural degradation of steel 15Kh5M upon continuous duty are presented. It is shown that structural degradation of steel during operation under high temperatures and stresses is accompanied by enlargement of the microstructural objects, broadening of the grain boundaries and allocation of the dispersed particles which are represented as point objects in the images. The processes of structural degradation lead to an increase in the range of changes in the components of the multifractal spectra. High values of complex indicators of structural arrangement indicate to an increase in heterogeneity and randomness at the micro-scale level, but at the same time, to manifestation of the ordered combinations of individual submicrostructures. Those structural transformations adapt the material to external impacts and provide the highest reliability and fracture resistance of the material.


Author(s):  
M. L. Scriabin ◽  
A. I. Chuprakov

The paper deals with the classification of defects of castings obtained by electric arc smelting. Of particular interest to researchers is the rock-like and naphthalene fracture, but there is still no clear mechanism explaining its origin. A stone-like fracture is characterized by a clearly defined uniform surface over which the fracture occurs. Grain boundaries are partially soluble in the austenite phase, consisting of fine individual particles or films formed from molten eutectics. It is also worth noting that in most cases, the stone-like fracture is observed at the grain boundaries.


1992 ◽  
Vol 295 ◽  
Author(s):  
Stuart Mckernan ◽  
C. Barry Carter

AbstractGeneral high-angle tilt grain boundaries may be described by an arrangement of repeating structural units. Some grain-boundary defects may also be modeled by the incorporation of structural units of related boundary structures into the boundary. The simulation of these structures requires the use of prohibitively large unit cells. The possibility of modeling these boundaries by the superposition of image simulations of the individual structural units isinvestigated.


1988 ◽  
Vol 137 ◽  
Author(s):  
Hamlin M. Jennings

Cement paste of water:cement ratios less than about 0.3 usually are not workable, but workability can be maintained at these lower water:cement ratios by using superplasticizers. A typical explanation [1] of the mechanism behind the effectiveness of superplasticizers is that they adsorb on the surface of cement particles and adjust the surface charge so that the particles become deflocculated. The individual particles flow more easily than larger flocs.


1996 ◽  
Vol 428 ◽  
Author(s):  
Marc J.C. Van Den Homberg ◽  
A. H. Verbruggen ◽  
P. F. A. Alkemade ◽  
S. Radelaar

AbstractThe continuing scaling-down of integrated circuits leads to increased metallization reliability problems, especially electromigration. We used 1/f noise measurements to study the relation between electromigration and microstructure. These measurements are very sensitive to the microstructural attributes, such as grain boundaries and dislocations. Al lines were grown by graphoepitaxy: First, a pure Al film was grown by dc magnetron sputtering on a groove pattern etched into a SiO2 substrate. The growth was then followed by an in situ rapid thermal anneal that resulted in a complete filling of the grooves with Al. These Al lines were carefully characterized with SEM and Backscatter Kikuchi Diffraction. Depending on the presence of a temperature gradient during the anneal, the lines were either nearly single-crystalline or bamboo with one grain per ∼ 3 μm. The resistivity was ∼ 2.8 μΩcm, only slightly higher than for bulk Al. We measured the 1/f noise with the two-channel ac technique at RT. We found in both bamboo as well as the single-crystalline lines a very low noise intensity; a factor two lower than in conventionally sputter deposited and annealed Al lines. No clear difference between the noise spectra of the bamboo and the single-crystalline lines was observed. We concluded that grain boundaries are not the only contributor to 1/f noise; other types of defects must play a role as well.


The proofs of the no-interaction theorem have been given by many authors in the framework of hamiltonian and lagrangian formalism. They are based on the assumption that there is hamiltonian or lagrangian describing the interaction between particles. This paper presents the proof without such an assumption for one, two, three and four particles. We assume the conservation laws for the linear and angular momentum that are the sums of the respective quantities of individual particles. Then there is no interaction, i. e. the worldlines of the individual particles are straight.


When a beam of electric particles is passed through a sheet of matter the energy of the individual particles is reduced. The loss of energy is not the same for all the particles so that particles incident on the foil with the same energy emerge with different energies. This dispersion of the energy caused by the foil is known as the "straggling" of the particles. The straggling of α-particles has been the subject of several experimental investigations, and the theory in this case was adequately developed by Bohr in 1915. In the case of β-particles, however, the straggling was not experimentally investigated until quite recently and no theoretical treatment of the phenomenon has been given, the calculations of Bohr being, as he showed, applicable only to α-particles. The purpose of the work described in this paper is to develop a theory of the straggling of β-particles by thin foils and by means of it to interpret the results of experiment. The paper is arranged as follows. In 2 an account is given of the state of the experimental work on the subject, and in particular the effect of the complications introduced by "scattering" are considered. The formula derived by Bohr for the straggling of electric particles is given in 3 and its inapplicability to β-particles demonstrated. The present calculations of the straggling of β-particles are given in 4. The theory of the straggling of electric particles resolves itself into two parts. The first deals with the dynamics of collisions between electric particles and atoms, and is the same whether we are concerned with the straggling or some other phenomena such as ionisation of "stopping power." This may be called the fundamental theory and its requirements may be summarised in the function ϕ (Q) which express the frequency of collisions in which the electric particle loses energy of amount Q. The second part of the theory is the process of calculating the straggling by means of probability theory from the function ϕ . This may be regarded as the straggling theory proper and it is the main subject of 4. When the present calculations were started it was intended to calculate the straggling on the basis of classical theory only, the value of the function ϕ on this theory being definitely known. However, after some practice with the type of calculation involved it was decided to calculate the straggling for other forms of ϕ . From the results obtained it is possible to deduce the straggling corresponding to any form which ϕ may reasonably have, and if a new theory leads to a value of ϕ different from the classical value, the straggling on the new theory may readily be determined. Alternatively this fuller treatment may be used for the reverse process of calculating from the observed straggling the value of ϕ to which it corresponds. This is considered to be the most convenient procedure and in 5 the form of ϕ which explains the experimental results is deduced. this is compared in 6 with the value of ϕ on classical theory. A brief outline is given in 7 of certain new ideas concerning the nature of collisions of electric particles with electrons and atoms.


1962 ◽  
Vol 35 (4) ◽  
pp. 918-926 ◽  
Author(s):  
P. Mason

Abstract In Part I of this series it was shown how variations in the dynamic Young's modulus with extension could be represented by linear relations for gum rubbers in the region of 0 to 100% extension. The present work uses a similar treatment to examine how the viscoelastic behavior of natural rubber within this extension region is affected by the incorporation of two carbon blacks of widely differing colloidal activity. One of these materials, MT black, consists substantially of spherical particles with a mean diameter of about 0.4 microns: electron microscopy of cut surfaces of the black-rubber compound showed that the individual particles were well-dispersed. The finer material, HAF black, has a mean particle diameter of about 0.04 microns but exists in the rubber compound in a flocculated condition with aggregates up to about 0.3 microns in diameter. The rubber containing the coarse, MT black yielded linear strain relations enabling a direct comparison to be made with the behavior of the gum: the HAF material did not give linear relations for either the dynamic or the equilibrium Young's modulus. To facilitate discussion of this behavior it is desirable to set out more explicitly than in Part I the model underlying the analysis.


2008 ◽  
Vol 1150 ◽  
Author(s):  
Alp Findikoglu ◽  
Terry G. Holesinger ◽  
Alyson Niemeyer ◽  
Vladimir Matias ◽  
Ozan Ugurlu

AbstractWe summarize recent progress in growth and characterization of aligned-crystalline silicon (ACSi) films on polycrystalline metal and amorphous glass substrates. The ACSi deposition process uses, as a key technique, ion-beam-assisted deposition (IBAD) texturing on a non-single-crystalline substrate to achieve a biaxially-oriented (i.e., with preferred out-of-plane and in-plane crystallographic orientations) IBAD seed layer, upon which homo- and hetero-epitaxial buffer layers and hetero-epitaxial silicon (i.e., ACSi) films with good electronic properties can be grown. We have demonstrated the versatility of our approach by preparing ACSi films on customized architectures, including fully insulating and transparent IBAD layer and buffer layers based on oxides on glass and flexible metal tape, and conducting and reflective IBAD layer and buffer layers based on nitrides on flexible metal tape. Optimized 0.4-μm-thick ACSi films demonstrate out-of-plane and in-plane mosaic spreads of 0.8° and 1.3°, respectively, and a room-temperature Hall mobility of ∼90 cm2/V.s (∼50% of what is achievable with epitaxial single-crystalline Si films, and ∼1000 times that of amorphous Si films) for a p-type doping concentration of ∼4×1016 cm−3. By using various experimental techniques, we have confirmed the underlying crystalline order and the superior electrical characteristics of low-angle (<5°) grain boundaries in ACSi films. Forming gas anneal experiments indicate that Si films with low-angle grain boundaries do not need to be passivated to demonstrate improved majority carrier transport properties. Measurements on metal-insulator-semiconductor structures using ACSi films yield near-electronic-grade surface properties and low surface defect densities in the ACSi films. A prototype n+/p/p+–type diode fabricated using a 4.2-μm-thick ACSi film shows minority carrier lifetime of ∼3 μs, an estimated diffusion length of ∼30 μm in the p-Si layer with a doping concentration of 5×1016 cm−3, and external quantum efficiency of ∼80% at 450 nm with the addition of an MgO film anti-reflector.


Author(s):  
Yijie Wang ◽  
Jun Chen

Abstract Digital in-line holography (DIH) has been applied to measure the 3D position of objects in a variety of applications, including bubbles and droplets in multi-phase flows, tracking particles in turbulence flows, etc. In addition to the 3D position, the morphology and dimension of the individual particles can also be extracted from the recorded hologram. In this study, a lens-less digital in-line holography setup is applied to measure the morphology and size of three kinds of solid particles (Wollastonite Powder, Pearl Mica Powder and Solder Powder), whose sizes range from several to hundreds of micrometers. The statistics of equivalent diameter, aspect ratio and circularity are introduced to describe the morphology and dimension of each kind of particles. Microscopic images of the particles are taken to verify the accuracy of measurements with DIH. The results measured from DIH are in good agreements with results from microscopic images.


Sign in / Sign up

Export Citation Format

Share Document