Growth of hematite by surface oxidation of olivine

Author(s):  
S. McKernan ◽  
C. B. Carter

The oxidation of natural olivine has previously been performed on bulk samples and the reactions followed by preparation of TEM specimens from the annealed material. These results show that below ∼1000°C hematite and amorphous silica are formed, particularly around dislocations. At higher temperatures magnetite and some enstatite-like phase are formed. In both cases the olivine is left almost totally Fe depleted. By performing the oxidation on characterized thin TEM specimens it is possible to obtain more information on the nucleation and growth of the second phases formed. The conditions in a thin foil, however, are very different from those in the bulk especially with regard to surface effects. The nucleation of precipitates in particular may be expected to occur differently in these thin foils than in the bulk.TEM specimens of natural olivine (approximate composition Mg+Fe+Si2o4) which had been annealed at 1000°C for 1 hr were prepared by mechanical polishing and dimpling, followed by Ar ion milling to perforation. The specimens were characterized in the electron microscope and then heated in air in alumina boats to 900°C for between 30 and 180 minutes.

Author(s):  
J. R. Reed ◽  
D. J. Michel ◽  
P. R. Howell

The Al6Li3Cu (T2) phase, which exhibits five-fold or icosahedral symmetry, forms through solid state precipitation in dilute Al-Li-Cu alloys. Recent studies have reported that the T2 phase transforms either during TEM examination of thin foils or following ion-milling of thin foil specimens. Related studies have shown that T2 phase transforms to a microcrystalline array of the TB phase and a dilute aluminum solid solution during in-situ heating in the TEM. The purpose of this paper is to report results from an investigation of the influence of ion-milling on the stability of the T2 phase in dilute Al-Li-Cu alloy.The 3-mm diameter TEM disc specimens were prepared from a specially melted Al-2.5%Li-2.5%Cu alloy produced by conventional procedures. The TEM specimens were solution heat treated 1 h at 550°C and aged 1000 h at 190°C in air to develop the microstructure. The disc specimens were electropolished to achieve electron transparency using a 20:80 (vol. percent) nitric acid: methanol solution at -60°C.


2016 ◽  
Vol 61 (2) ◽  
pp. 791-796 ◽  
Author(s):  
S. Lesz ◽  
S. Griner ◽  
R. Nowosielski

Abstract The cracking of materials and fracture surface is of great practical and academic importance. Over the last few years the development of the fractography of crystalline alloys resulted in a useful tool for the prediction or failure analysis. Many attempts have been made to observe cracks using optical microscopy, X-ray topography and transmission electron microscopy (TEM). Of these techniques, the resolution of optical microscopy and X-ray topography is too poor. By contrast, the resolution of TEM is high enough for detailed information to be obtained. However, in order to apply TEM observations, a thin foil specimen must be prepared, and it is usually extremely difficult to prepare such a specimen from a pre-selected region containing a crack. In the present work, deformation mechanisms fracture surfaces of Ni-based metallic glass samples have been studied by specially designed experiments. In order to study the deformation mechanisms and fracture the Ni-based metallic glasses have been investigated in the tensile test. The structure and fracture surfaces after the decohesion process in tensile tests were observed using transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The studies of structure were performed on thin foils. Moreover the investigated tape was subjected to a banding test. Then, the tape was straightened and the thin foil from the area of maximum strain was prepared. This thin foil sample was deformed before the TEM investigation to obtain local tears.


Author(s):  
Daniel L. Callahan

Aluminum nitride (AlN)is an increasingly important electronic ceramic with oxygen as an important bulk impurity. Quantitative microanalysis of oxygen to determine its precise distribution is a necessary step in characterization of the ceramic that may be complicated due to surface oxidation. AlN is thermodynamically unstable compared to the oxide (Al2O3) at room temperature in the presence of environmental oxygen or water and may thus be expected to form a thin, possibly passive oxide film similar to the oxide layer of pure aluminum metal. Such an oxide layer has been used to explain anomalies in oxygen quantification in AlN by neutron activation methods [1] but reflecteion high energy electron diffraction studies [2] failed to reveal either crystalline or amorphous oxide phases forming at room temperature.Electron diffraction techniques in the transmission electron microscope were used to examine thin AlN sections for possiblecrystalline surface layers. A ceramic AlN sample was prepared using conventional techniques for the preparation of thin foils with final thinning accomplished by ion milling.


Author(s):  
Geun-Hong Kim ◽  
Chang-Hwan Chun

Commercial diamond coated WC-Co cutting tool has been investigated by transmission electron microscope (TEM) to understand the nucleation and growth of diamond on WC substrate. Cross-sectional specimens have been prepared by mechanical polishing followed by ion milling. TEM observations have been performed using analytical TEM, JEM 4000FX (JEOL Ltd.).The surface of the coated diamond is composed of grains of 2 - 5 μm in diameter. Each main grain is formed by columnar subgrains of 10 - 50 nm in diameter with similar orientations. Cobalt, a binder in cemented carbide, within 5 μm in depth from the carbide surface has been found to be removed to increase the adhesion of diamond.One of diamond subgrains, which has been grown large in [001] orientation on WC grains is shown in Fig. 1. High density of twins are found on (111) plane starting from WC grain boundaries. It is thought that the interfacial stress between diamond layer and WC grains is accommodated by these twins.


1986 ◽  
Vol 82 ◽  
Author(s):  
D.W. Susnitzky ◽  
C.B. Carter

ABSTRACTSurfaces of crystalline materials generally facet and form steps and ledges on low-index planes to reduce their total energy. A conventional wedge-shaped transmission electron microscope (TEM) thin foil, prepared slightly misoriented with respect to a low-index plane, provides a suitable geometry for the study of surface ledges, steps and facets. This TEM study characterizes the surface features of annealed thin foils prepared from various oxides with a range of nominally low-index orientations. Observations from single-crystal α-A12O3 and MgAl2O4 (spinel) will be included.The steps and facets typically form along energetically favorable, low-index planes and bound terraces of low-index orientation. The structure of these features are discussed. In addition, surface step movement has been observed and monitored through a series of reannealing experiments on the same foil.


Author(s):  
N. E. Paton ◽  
D. de Fontaine ◽  
J. C. Williams

The electron microscope has been used to study the diffusionless β → β + ω transformation occurring in certain titanium alloys at low temperatures. Evidence for such a transformation was obtained by Cometto et al by means of x-ray diffraction and resistivity measurements on a Ti-Nb alloy. The present work shows that this type of transformation can occur in several Ti alloys of suitable composition, and some of the details of the transformation are elucidated by means of direct observation in the electron microscope.Thin foils were examined in a Philips EM-300 electron microscope equipped with a uniaxial tilt, liquid nitrogen cooled, cold stage and a high resolution dark field device. Selected area electron diffraction was used to identify the phases present and the ω-phase was imaged in dark field by using a (101)ω reflection. Alloys were water quenched from 950°C, thinned, and mounted between copper grids to minimize temperature gradients in the foil.


Author(s):  
E. U. Lee ◽  
P. A. Garner ◽  
J. S. Owens

Evidence for ordering (1-6) of interstitial impurities (O and C) has been obtained in b.c.c. metals, such as niobium and tantalum. In this paper we report the atomic and microstructural changes in an oxygenated c.p.h. metal (alpha titanium) as observed by transmission electron microscopy and diffraction.Oxygen was introduced into zone-refined iodide titanium sheets of 0.005 in. thickness in an atmosphere of oxygen and argon at 650°C, homogenized at 800°C and furnace-cooled in argon. Subsequently, thin foils were prepared by electrolytic polishing and examined in a JEM-7 electron microscope, operated at 100 KV.


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Author(s):  
T. C. Tisone ◽  
S. Lau

In a study of the properties of a Ta-Au metallization system for thin film technology application, the interdiffusion between Ta(bcc)-Au, βTa-Au and Ta2M-Au films was studied. Considered here is a discussion of the use of the transmission electron microscope(TEM) in the identification of phases formed and characterization of the film microstructures before and after annealing.The films were deposited by sputtering onto silicon wafers with 5000 Å of thermally grown oxide. The film thicknesses were 2000 Å of Ta and 2000 Å of Au. Samples for TEM observation were prepared by ultrasonically cutting 3mm disks from the wafers. The disks were first chemically etched from the silicon side using a HNO3 :HF(19:5) solution followed by ion milling to perforation of the Au side.


Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Sign in / Sign up

Export Citation Format

Share Document