Cell monolayer technique using sectionable culture beads

Author(s):  
Margaret E. Hogan

The use of tissue culture, as an experimental model, has gained high regard in the study of organism function and control. For this reason the ability to observe these cells has become quite important in both transmission(TEM) and scanning electron microscopy(SEM).Most monolayers of cells have been grown on flat substrates (culture plates and flasks), and have required involved manipulation to prove the desired plane of sectioning. With the use of culture beads much of the handling is eliminated, in fact the procedure is really no different than preparing whole tissue for electron microscopy. Along with the ease of preparation, the beads provide increased tissue per section, and therefore a more broad sampling of the specimens.

Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2948
Author(s):  
Rana S Al-Hamdan ◽  
Basil Almutairi ◽  
Hiba F Kattan ◽  
Noura A. Alsuwailem ◽  
Imran Farooq ◽  
...  

An experimental adhesive incorporated with different nano-hydroxyapatite (n-HA) particle concentrations was synthesized and analyzed for dentin interaction, micro-tensile bond strength (μTBS), and degree of conversion (DC). n-HA powder (5 wt % and 10 wt %) were added in adhesive to yield three groups; gp-1: control experimental adhesive (CEA, 0 wt % HA), gp-2: 5 wt % n-HA (HAA-5%), and gp-3: 10 wt % n-HA (HAA-10%). The morphology of n-HA spheres was evaluated using Scanning Electron Microscopy (SEM). Their interaction in the adhesives was identified with SEM, Energy-Dispersive X-ray (EDX), and Micro-Raman spectroscopy. Teeth were sectioned, divided in study groups, and assessed for μTBS and failure mode. Employing Fourier Transform-Infrared (FTIR) spectroscopy, the DC of the adhesives was assessed. EDX mapping revealed the occurrence of oxygen, calcium, and phosphorus in the HAA-5% and HAA-10% groups. HAA-5% had the greatest μTBS values followed by HAA-10%. The presence of apatite was shown by FTIR spectra and Micro-Raman demonstrated phosphate and carbonate groups for n-HA spheres. The highest DC was observed for the CEA group followed by HAA-5%. n-HA spheres exhibited dentin interaction and formed a hybrid layer with resin tags. HAA-5% demonstrated superior μTBS compared with HAA-10% and control adhesive. The DC for HAA-5% was comparable to control adhesive.


1995 ◽  
Vol 58 (8) ◽  
pp. 837-842 ◽  
Author(s):  
R. E. DROLESKEY ◽  
D. E. CORRIER ◽  
D. J. NISBET ◽  
J. R. DELOACH

Bacterial colonization of cecal mucosal epithelium in 3-day-old chicks administered a characterized continuous-flow (CF) culture of 29 microorganisms on the day of hatch was evaluated by scanning electron microscopy. Extensive colonization of the mucosa was noted in the ceca of CF-treated chicks, with large colonies of bacteria located predominately within and between crypts. Cecal crypts from control chicks contained only thin strands of mucus with a few bacteria. Individual cells and clumps of bacteria were observed bound to the mucosal epithelium in both CF-treated and control chicks. Colonization by CF culture bacteria was accompanied by an increase in the concentration of volatile fatty acids in the cecal contents and increased resistance to colonization by Salmonella typhimurium.


1975 ◽  
Author(s):  
T. K. Day ◽  
K. G. A. Glark ◽  
V. V. Kakkar

The lack of a satisfactory in vivo experimental model has probably been responsible for the delay in the clinical application of recent advances in in vitro research on thrombosis. This paper describes a model in which thrombosis is initiated by an electrical stimulus. The thrombus produced has the histological and biochemical features of human deep vein thrombosis (DVT).The minimum stimulus necessary to induce thrombosis was first determined by passing a fixed current for timed intervals along the femoral veins of 10 rabbits. Thrombi were seen 24 hours later if the total charge passed exceeded a threshold value of 25 millicoulombes. With this small current, no endothelial changes were visible immediately after the passage of the charge on light or scanning electron microscopy. At 24 hours a mural thrombus formed, which had fully cross-linked fibrin and histological features resembling human DVT.In the second series of experiments, the sequence of changes occurring in thrombus production was investigated in 3 groups of 18 rabbits each. After passage of the critical charge along the femoral vein in each animal, veins were removed at fixed intervals, the contralateral vein acting as a control. The veins were examined by scanning electron-microscopy (Group I), transmission electron-microscopy (Group II) and light microscopy (Group III), The earliest changes were detectable at 5 minutes and consisted of the laying down of an organised structure of criss-crossing fibrin strands with small platelet clumps at fibrin intersections. Later the fibrin structure spread towards the lumen; platelet clumps fused and a coralline thrombus was formed by 24 hours. The significance of these changes will be discussed.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1617-1617
Author(s):  
Veronica H. Flood ◽  
Chandrasekaran Nagaswami ◽  
Irina N. Chernysh ◽  
Hamid A. Al-Mondhiry ◽  
John W. Weisel ◽  
...  

Abstract Cleavage of fibrinopeptide A is the first step in fibrin clot formation, and mutations at the fibrinopeptide A cleavage site are the most common cause of dysfibrinogenemia. We describe here the effect on clot structure of a mutant Aα R16C fibrinogen with defective fibrinopeptide A cleavage (designated fibrinogen Hershey III). The propositus, a young child with mild bleeding symptoms, was found to be heterozygous for the Aα R16C mutation. Fibrinogen was purified from Hershey III and control plasma via glycine precipitation. Hershey III fibrinogen was only 63 ± 10% clottable with thrombin (mean ± SEM), as compared to 96 ± 0.4% for normal fibrinogen. Since the propositus was heterozygous for the mutation, the unclottable portion likely consisted of mutant homodimers, but it was still possible that normal/mutant heterodimers existed. Because the cysteine in the mutant fibrinogen prevents thrombin-mediated fibrinopeptide A cleavage, we hypothesized that incorporation of uncleaved fibrinopeptide A, if present, would affect clot structure. Western blotting was used to evaluate the presence of fibrinopeptide A in clottable and unclottable fibrinogen. For fibrinogen Hershey III, both forms showed a substantial amount of fibrinopeptide A, suggesting that mutant fibrinogen was incorporated into the final clot. No fibrinopeptide A was seen in either the clottable or unclottable fibrinogen from the normal control. Next, fibrin clots were made with thrombin, critical-point dried, and visualized via scanning electron microscopy. Visco-elastic measurements were obtained with a torsion pendulum and clot permeability was compared to that of clots formed with normal fibrinogen. The relative proportions of normal vs. mutant fibrinogen in the clottable and unclottable fibrinogen were assessed by protein sequencing. Scanning electron microscopy showed that the Hershey III clots displayed abnormal architecture with many short fibrin fibrils, consistent with premature fibril termination. Hershey III clots also had thicker fibers, with an average fiber diameter of 182 nm compared to 151 nm for the normal control. A significant difference in clot stiffness (G′), energy dissipated by viscous processes (G″), and permeability (Ks) was seen when fibrinogen Hershey III was compared to a normal control (see table). Protein sequencing of the unclottable Hershey III fibrinogen showed only the homozygous mutant form, while the fibrin clot showed approximately 50% each of the wild-type and mutant fibrinogen chains. These results support the presence of both homodimers and heterodimers in fibrinogen Hershey III, and suggest that incorporation of Aα R16C heterodimers into the fibrin clot leads to defects in fiber formation and clot structure. Mechanical Properties of Hershey III and Control Clots Hershey III Control P G′ (dyne/cm2) 10.8 37.9 0.03 G″ (dyne/cm2) 0.83 2.77 0.04 Tan δ (G″/G′) 0.077 0.076 0.79 Ks (10−7 cm2) 1.86 2.44 0.01


Development ◽  
1979 ◽  
Vol 51 (1) ◽  
pp. 227-243
Author(s):  
Ruth Bellairs

The segmentation of somites in the chick embryo has been studied by transmission and scanning electron microscopy (stages 8–14). The segmental plate mesoderm consists of loosely arranged mesenchymal cells, whereas the newly formed somites are composed of elongated, spindle-shaped cells arranged radially around a lumen, the myocoele. The diameter of each somite is thus two cells plus the myocoele. Two major factors appear to be responsible for the change in cell shape at segmentation: (1) Each prospective somite cell becomes anchored at one end to the adjacent epithelia (i.e. the neural tube, the notochord, the ectoderm, the endoderm or the aorta) by means of collagen fibrils. These fibrils are already present in the segmental plate before the somites begin to form. (2) A change in cell-to-cell adhesiveness causes the free ends of these cells to adhere to one another. (Bellairs, Curtis & Sanders, 1978). This adhesion is then supplemented by the development of tight junctions proximally in the somite. Because it is anchored at both ends, each somite cell is under tension in much the same way as a fibroblast cell in tissue culture is under tension. Each somite cell therefore becomes elongated and the somite as a whole accommodates its general shape to that of the space available between the adjacent tissues. The arrangement of the cells in the more differentiated somites (stages 17–18) has also been examined and it has been found that the chick resembles Xenopus in that the myotome cells undergo rotation and become orientated in an anteroposterior direction.


1990 ◽  
Vol 104 (2) ◽  
pp. 91-96 ◽  
Author(s):  
L.-E. Stenfors ◽  
E. G. Olsen ◽  
A. Ö. Henriksen

AbstractSubtotal pars flaccida perforation was effected in vitro in rat tympanic membranes. The drums were subsequently kept in tissue culture and after various intervals studied by means of light and scanning electron microscopy. No complete covering of the perforation was seen, though a marked thickening and hyperplasia of the outer, keratinizing, squamous epithelium (OE) was evident. The inner, tympanal epithelium (IE) appeared swollen, containing rounded structures in the cytoplasm especially close to the contact area with the OE. Ingrowth of OE onto the tympanal side of the drum was seen particularly in the areas where the IE was sparse and completely lacking. Complete covering of a drum perforation seems to be dependent on the formation of supporting granulation tissue, probably resulting from an inflammatory reaction in the healing area.


2016 ◽  
Vol 19 (4) ◽  
pp. 56
Author(s):  
Nadia De Souza Ferreira ◽  
Paula Elaine Cardoso ◽  
Natalia Passos Ferreira ◽  
Amanda Costa Corocher ◽  
Isabela Ferreira Paulino ◽  
...  

<p><strong>Objective</strong>: The aim of this study was to evaluate the morphological and chemical alterations in enamel, dentin and cementum after internal bleaching using scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). <strong>Material and Methods:</strong> Seventy-two bovine incisor teeth were prepared, cut and bleached for 7 days as follows: HP: 35% hydrogen peroxide gel; HP+SP: 35% hydrogen peroxide gel + sodium perborate; CP: 37% carbamide peroxide gel; CP+SP: 37% carbamide peroxide gel + sodium perborate; SP: sodium perborate + water; and control: deionized water. The specimens were sectioned and prepared for morphological analysis under SEM and analysis of calcium, phosphorus, oxygen and carbon levels using EDS. <strong>Results</strong>: A significant reduction was found in the calcium levels in enamel after treatment with CP + SP and CP (p &lt; 0.05). Carbon (organic part) was hardly altered in enamel. A significant reduction in the calcium levels was found in dentin in Groups HP+SP, CP and CP+SP. Phosphorus levels increased after SP+H20 (p &lt; 0.05) and CP (p &lt; 0.05). Carbon levels showed little variation and the largest amount was found in Groups CP and CP+SP (p &lt; 0.05); in the other groups there was no alteration. A significant reduction in the calcium levels was found in the cementum in Group CP+SP (p &lt; 0.05). <strong>Conclusion</strong>: Alterations in the enamel, dentin and cementum compositions occurred after bleaching and these alterations showed to be less significant with sodium perborate and water.</p><p><strong>Keywords</strong>: Carbamide peroxide; Hydrogen peroxide; Scanning electron microscopy; Sodium perborate; Tooth bleaching.</p>


2021 ◽  
Vol 21 (7) ◽  
pp. 3716-3720
Author(s):  
Ju-Hun Ahn ◽  
Dae-San Choi ◽  
Chang-Yull Lee

Temperature sensing and control is an important factor to prevent the overheating of mechanical and electrical components in various devices. However, commercialized temperature sensors can be disadvantageous due to their limited shapes. Therefore, we propose a smart paint to solve this issue. In this study, smart paints were produced based on carbon black, and their properties were measured using thermistors. Experiments were conducted to analyze the resistance properties using carbon and four types of polymers. Through the scanning electron microscopy (SEM) images of the mixed paints, it was shown that the resistances were decreased due to the necking phenomena. Furthermore, each paint provides a different temperature coefficient depending on the polymer type.


Sign in / Sign up

Export Citation Format

Share Document