Multiply faulted defects in high-current oxygen-implanted silicon-on-insulator

Author(s):  
S. Visitserngtrakul

High-dose oxygen implantation into silicon, SIMOX (separation by implantation of oxygen), is a leading technique for producing silicon-on-insulator (SOI) material. Most studies have examined SIMOX prepared with a traditional implanter, which has beam currents of 100 to 400 μA. Since the formation of SIMOX requires a very high dose of oxygen, typically one hundred times larger than the standard dopant implant doses, the process takes many hours. Recently, a high-current implanter has been developed for SIMOX fabrication, which produces a 40 mA beam current. However, the higher current density has not only shortened the implantation time, but also produced features not routinely observed in samples implanted at much lower currents. The study reported here used conventional transmission and high resolution electron microscopy (CTEM,HREM) to characterize microstructure and defects in SIMOX implanted at high currents.

1991 ◽  
Vol 6 (4) ◽  
pp. 792-795 ◽  
Author(s):  
Supapan Visitserngtrakul ◽  
Stephen J. Krause ◽  
John C. Barry

Conventional and high resolution electron microscopy (HREM) were used to study the structure of {113} defects in high-dose oxygen implanted silicon. The defects are created with a density of 1011 cm−2 below the buried oxide layer in the substrate region. The HREM images of the {113} defects are similar to the ribbon-like defects in bulk silicon. It is proposed that there is a third possible structure of the defects, in addition to coesite and/or hexagonal structures. Portions of some defects exhibit the original cubic diamond structure which is twinned across {115} planes. The atomic model shows that the {115} interface is a coherent interface with alternating five- and seven-membered rings and no dangling bonds.


1989 ◽  
Vol 163 ◽  
Author(s):  
S. Visitserngtrakul ◽  
J. Barry ◽  
S. Krause

AbstractConventional and high resolution electron microscopy (HREM) were used to study the structure of the {113} defects in high-dose oxygen implanted silicon. The defects are created with a density of 1011 cm-2 below the buried oxide layer in the substrate region. The {113} defects are similar to the ribbon-like defects in bulk silicon. Our HREM observations show that two crystalline phases are present in the defect. Portions of the defects exhibit the original cubic diamond structure which is twinned across {115} planes. The atomic model shows that the {115} interface is a coherent interface with alternating five- and seven-membered rings and no dangling bonds.


Author(s):  
J.C. Park ◽  
J.D. Lee ◽  
S.J. Krause

High dose oxygen implantation (SIMOX) has been a successful fabrication technology of silicon-on-insulator (SOI) material for CMOS circuits with reduced power consumption and higher operating speed. However, high density (~108 cm-2) of the through-thickness defects (TTD) in the top Si layer of SIMOX is one of the most serious problems. Hill et al. reported multiple implant/anneal method to remarkably reduce defect densities to <104 cm-2. In the multiple implant/anneal material, however, ~106 cm2 of the final dominant defects, including stacking fault pyramids (SFP) and the precipitate-dislocation complexes (PDC), still remained after high temperature annealing. In this work, the microstructures and formation mechanism of the final defects were studied by various TEM techniques.Silicon (100) wafers were sequentially triple implanted to doses of 6/6/6×l017 at 200kev and 620°C. After each implantation the wafers were held at 1000°C for 2 hours and annealed at 1325°C for 4 hours in argon ambient plus 5% oxygen. Cross-section (XTEM) and plan-view (PTEM) transmission electron microscopy specimens were examined by using a weak beam dark field (WBDF) and high resolution electron microscopy (HREM) techniques in JEM 2000FX and Topcon 002B operating at 200kev.


1990 ◽  
Vol 183 ◽  
Author(s):  
S. Visitserngtrakul ◽  
C. O. Jung ◽  
B. F. Cordts ◽  
P. Roitman ◽  
S. J. Krause

AbstractHigh resolution electron microscopy (HREM) has been used to study the atomic arrangement of defects formed during high-dose oxygen implantation of silicon-on-insulator material. The effect of implantation parameters of wafer temperature, dose, and current density were investigated. Wafer temperature had the largest effect on the type and character of the defects. Above the buried oxide layer in the top silicon layer, HREM revealed that microtwins and stacking faults were created during implantation from 350–450°C. From 450–550°C, stacking faults were longer and microtwinning was reduced. From 550–700°C, a new type of defect was observed which had lengths of 40 to 140 nm and consisted of several discontinuous stacking faults which were randomly spaced and separated by two to eight atomic layers. We have referred to them as “multiply faulted defects” (MFDs). Beneath the buried oxide layer in the substrate region, the defects observed included stacking faults and ( 113 ) defects. The results indicated that some parts of the ( 1131 defects can assume a cubic diamond structure created through a twin operation across (115) planes. Details of the structure and formation mechanisms of MFDs and other defects will be discussed.


2007 ◽  
Vol 131-133 ◽  
pp. 137-142
Author(s):  
Ida E. Tyschenko ◽  
A.G. Cherkov ◽  
M. Voelskow ◽  
V.P. Popov

The behavior of Sb and In atoms embedded into silicon-on-insulator structure (SOI) near the bonding interface was investigated as a function of annealing temperature. Two kinds of the ionimplanted SOI structures were prepared. First kind of the structures contained the buried SiO2 layer implanted with In+ and Sb+ ions near the top Si/SiO2 interface. In second kind, the ion-implanted regions were placed on each side of the bonding interface: Sb+ ions were implanted into Si film; In+ ions were implanted into SiO2 layer. Rutherford backscattering spectrometry (RBS) and crosssectional high-resolution electron microscopy (XTEM) were employed to study the properties of the prepared structures. The formation of InSb nanocrystals was observed within the SiO2 bulk from first kind of the SOI structures as annealing temperature increased to 1100o C. In the case of the double side implanted SOI structures, an increase in annealing temperature to 1100o C was accompanied by the up-hill diffusion of In atoms from the SiO2 bulk toward the bonding interface and by the endotaxial growth of InSb nanocrystals on the top Si/SiO2 interface. It was concluded from the experimental results that Sb atoms were the nucleation centers of InSb phase.


1997 ◽  
Vol 3 (5) ◽  
pp. 393-408 ◽  
Author(s):  
T. Kamino ◽  
K. Sasaki ◽  
H. Saka

High Resolution Electron Microscopy In Situ Observation of Dynamic Behavior of Grain Boundaries and Interfaces at Very High Temperatures


Author(s):  
C.W.T. Bulle-Lieuwma ◽  
A.H. van Ommen

Hetero-epitaxial Si/CoSi2/Si structures have been formed by high dose implantation of Co+ ions into (001) and (111) Si substrates and subsequent annealing of the substrates. Such structures are of interest due to their application as metal base base and permeable base transistors. We have studied the microstructure of both as-implanted and annealed structures by transmission electron microscopy (TEM), including high-resolution electron microscopy (HREM). HREM was performed using a Philips 300 kV electron microscope with a point resolution of approximately 0.19 nm. CoSi2 layers have been formed by implantation of 170 keV Co+ ions at a temperature of 450°C and to doses of 1× 1017 and 2× 1017 Co+ / cm2. The wafers were annealed for 30 minutes in a N2/H2 ambient at a temperature of 1000°C. In the as implanted structures, the Co is present in the form of epitaxial CoSi2 precipitates. Precipitates occur both in an aligned (A-type) and twinned (B-type) orientation. Annealing of the implanted structures results in the formation of a buried CoSi2 layer of aligned orientation. A striking observation is that the CoSi2 layer has an aligned orientation with respect to the Si matrix, whereas CoSi2 grown on top of (111) Si has a twinned orientation. The mechanism behind this phenomenon is not fully understood. We think that geometrical aspects play a crucial role. Therefore we have studied in detail the geometry of the coordination of coherent CoSi2 precipitates.


1992 ◽  
Vol 260 ◽  
Author(s):  
B. Pécz ◽  
G. Radnóczi ◽  
Zs. J. Horváth ◽  
P. B. Barna ◽  
Erika Jároli ◽  
...  

ABSTRACTThe effect of the defective nature of the substrate on the alloying behaviour of Xe implanted Au(55 ran)/n-GaAs system was studied using cross sectional transmission electron microscopy.Low dose Xe implantation (700 keV, 1*1014 ions/cm2) caused the formation of about SO nm thick polycrystalline region of GaAs beneath the gold layer. Annealing the implanted sample at 450°C gold diffused through the polycrystalline GaAs region and formed large pits of Au(Ga) solid solution in the defective area of GaAs having stacking faults and twins. The formation of a regrown GaAs covering layer was observed on the top of the reacted metallization simultaneously.High dose implantation of Xe++ ions resulted in the formation of amorphous GaAs layer with a thickness of about 750 nm. Twinned regions of GaAs were observed at the amorphous - crystalline GaAs interface by high resolution electron microscopy. Ion beam caused phase transition was observed in this sample. The amorphous GaAs region recrystallized to single crystalline GaAs due to annealing at 400°C.


1990 ◽  
Vol 183 ◽  
Author(s):  
Hans Cerva ◽  
Helmut Oppolzer

AbstractSeveral examples of defect characterization which are of topical inter-est to Si device technology are presented. The results obtained by high-reso-lution electron microscopy (HREM) are discussed in context with the actual defect problem. - Reinvestigation of platelike defects in Si produced by reactive ion etching in hydrogen containing plasmas (CHF3) shows that some of the {111} platelets are of extrinsic nature. The defects contain probably both constituents from the plasma and Si-interstitials created by the impin-ging ions. - A high dose As-implantation forms an amorphous Si surface layer which has a sharply curved amorphous/crystalline (a/c)-interface below the implantation mask edge. Annealing at 900°C leads to formation of vacancy-type defects under the mask edge. This is due to the different regrowth rates on the various lattice planes of the curved a/c-interface. - Metal-silicide pre-cipitation at the SiO2/Si interface reduces the breakdown field strength of thin oxides. The main failure mechanism observed in model experiments is the thinning of the oxide layer thickness. - Additional x-ray peaks which are frequently observed in low-pressure chemical vapour deposited (625 7deg;C) po-lycrystalline Si layers arise from a diamond hexagonal Si phase. Small inclu-sions and bands of this phase were for the first time directly observed by HREM.


Sign in / Sign up

Export Citation Format

Share Document