A technique for preparing semiconductor cross sections for both TEM and SEM analysis

Author(s):  
Stanley J. Klepeis ◽  
J.P. Benedict ◽  
R.M Anderson

The ability to prepare a cross-section of a specific semiconductor structure for both SEM and TEM analysis is vital in characterizing the smaller, more complex devices that are now being designed and manufactured. In the past, a unique sample was prepared for either SEM or TEM analysis of a structure. In choosing to do SEM, valuable and unique information was lost to TEM analysis. An alternative, the SEM examination of thinned TEM samples, was frequently made difficult by topographical artifacts introduced by mechanical polishing and lengthy ion-milling. Thus, the need to produce a TEM sample from a unique,cross-sectioned SEM sample has produced this sample preparation technique.The technique is divided into an SEM and a TEM sample preparation phase. The first four steps in the SEM phase: bulk reduction, cleaning, gluing and trimming produces a reinforced sample with the area of interest in the center of the sample. This sample is then mounted on a special SEM stud. The stud is inserted into an L-shaped holder and this holder is attached to the Klepeis polisher (see figs. 1 and 2). An SEM cross-section of the sample is then prepared by mechanically polishing the sample to the area of interest using the Klepeis polisher. The polished cross-section is cleaned and the SEM stud with the attached sample, is removed from the L-shaped holder. The stud is then inserted into the ion-miller and the sample is briefly milled (less than 2 minutes) on the polished side. The sample on the stud may then be carbon coated and placed in the SEM for analysis.

1991 ◽  
Vol 254 ◽  
Author(s):  
John Benedict ◽  
Ron Anderson ◽  
Stanley J. Klepeis

AbstractCross sections of material specimens for TEM analysis must be produced in the shortest time possible, contain few, if any, artifacts and have a large area available for analysis. The analyst must also be able to prepare these cross sections from specified areas of complex, heterogeneous structures on a routine, reproducible basis to meet the growing needs of the semiconductor industry for TEM analysis. The specimen preparation spatial resolution required for preparing precision cross sections is substantially less than one micron. Cross sections meeting these requirements can be prepared by mounting a specimen to the Tripod Polisher and mechanically polishing on one side of the specimen, using a sequence of progressively finer grit diamond lapping films, until the area of interest is reached. This polished surface is then very briefly polished on a cloth wheel with colloidal silica to attain the final polish on that side. The specimen is then flipped over on the Tripod Polisher and polished from the other side, using same sequence of diamond lapping films to reach the predefined area of interest. The Tripod Polisher is set at a slight angle, to produce a tapered, wedge-shaped specimen, which has the area of interest at the thinnest edge of the taper. The specimen is polished with the diamond lapping films and the colloidal silica until it is 1000 Angstroms or less in thickness. The specimen is removed from the polisher and mounted on a 2 × 1mm slotted grid with M-Bond 610 epoxy. After the epoxy is cured the specimen can be taken directly to the microscope for analysis. The need for ion milling has been eliminated or reduced to a few minutes in most of our work because of the thinness of the final specimen. The total specimen preparation time is between 2.5 and 4 hours, depending on the specimen and the size of the specified area. The area available for analysis ranges from 0.5mm up to the full size of the mounting grid opening. The wedge shape of the specimen provides the mechanical stability needed for a long thin specimen.


Author(s):  
L. A. Giannuzzi ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bitler

A primary concern involving transmission electron microscopy (TEM) analysis is whether the electron transparent region under investigation is representative of the bulk material. TEM is frequently employed to examine the microstructure of electrodeposited materials due to their small grain size and high dislocation density. Previous work in this laboratory on palladium electrodeposits has shown that deformation twins and diffusion induced recrystallization may be induced during preparation of thin foils using both twin jet electropolishing and ion beam thinning. Recent developments in TEM sample preparation in the physical sciences include a procedure for the cross-section of heterogeneous layered materials which reduces or eliminates the need for ion milling. In this sample preparation technique, a tripod polisher device is used to mechanically polish the specimen to electron transparency. The purpose of this paper is to report on the influence of the tripod polisher sample preparation technique, on the microstructure of zinc electrodeposits.


1990 ◽  
Vol 199 ◽  
Author(s):  
J. P. Benedict ◽  
Ron Anderson ◽  
S. J. Klepeis ◽  
M. Chaker

ABSTRACTThe procedures described in this paper allow both SEM and TEM analysis to be performed on the same, device specific, semiconductor cross section. In order to accomplish this, a number of tools and fixtures have been constructed that allow the user to polish into the sample to a predetermined plane-of-polish, bisecting the device or feature of interest for SEM analysis. After SEM examination, the specimen is prepared for TEM analysis by first affixing a grid to the just-examined surface, inverting the specimen and parallel-polishing the backside of the specimen until the specimen's total thickness is in the 0.5 to 1.0μm range using the described tools. A subsequent one to ten minute ion milling step cleans the specimen. A very considerable positive side-effectof this method is the nearelimination of artifacts arisingfrom the use of strong chemicals and lengthy ion milling. The method has been extended to the preparation of plan-view device samples and non-semiconductor specimens.


1991 ◽  
Vol 254 ◽  
Author(s):  
L. A. Giannuzzi ◽  
P. R. Howell ◽  
H. W. Pickering ◽  
W. R. Bidter

AbstractA preparation technique for the production of cross-sectional transmission electron microscope (TEM) samples from the interdiffusion regions of Fe-Zn binary couples is described. To alleviate the problem of unequal ion milling rates between the Fe and Zn, a 0.75mm thick Fe sheet has been double plated with a thick electrodeposited Zn coating to achieve a total couple thickness of ˜3mm. After slicing the couple in cross-section, the Fe region of the sample is dimpled to perforation near the Fe-Zn interface. Final thinning for TEM analysis is obtained by ion milling using a liquid nitrogen cold stage and sector speed control. The ion milling procedure is stopped when the perforated hole in the Fe-side of the couple extends through the faster eroding Zn-side of the interface. This technique, in modified form, is expected to be suitable for commercial steels coated with Zn-based alloys.


2005 ◽  
Vol 13 (1) ◽  
pp. 26-29 ◽  
Author(s):  
R.B. Irwin ◽  
A. Anciso ◽  
P.J. Jones ◽  
C. Patton

Sample preparation for Transmission Electron Microscopy (TEM) is usually performed such that the final sample orientation is either a cross section or a plan view of the bulk material, as shown schematically in Figure 1. The object of any sample preparation technique, for either of these two orientations, is to thin a selected volume of the sample from its initial bulk state to electron transparency, ~ 100nm thick. In doing so, the final sample must be mechanically stable, vacuum compatible, and, most of all, unchanged from the initial bulk material. Many techniques have been used to achieve this goal: cleaving, sawing, mechanical polishing, chemical etching, ion milling, focused ion beam (FIB) milling, and many others.


1991 ◽  
Vol 254 ◽  
Author(s):  
David P. Basile ◽  
Ron Boylan ◽  
Brian Baker ◽  
Kathy Hayes ◽  
David Soza

AbstractIn the semiconductor industry, shrinking geometries and increasing process complexity have greatly increased the demand for TEM analysis of specific submicron regions. Until recently, samples of this nature have been difficult if not impossible to prepare. We have combined cross-sectional TEM sample preparation (XTEM) and the precise material sputtering of focussed ion beam milling (FIB) to thin samples to electron transparency. We call this sample preparation technique FIBXTEM.Three advantages of this technique are: 1) The area of interest can be analyzed in the scanning electron microscope before final thinning; 2) Any specific defect area becomes a candidate for TEM analysis, including failed sub-micron structures; and 3) Samples are generally artifact-free and of uniform thickness.Key elements of the FIBXTEM technique include precision planar polishing, unique holders for mounting and transferring samples between systems, and the FIB-induced deposition of a sacrificial protective layer over the area of interest during ion thinning.This technique extends the use of TEM analysis into new areas of semiconductor process development and failure analysis. Recent applications for materials problem solving and failure analysis are discussed.


Author(s):  
P. B. Basham ◽  
H. L. Tsai

The use of transmission electron microscopy (TEM) to support process development of advanced microelectronic devices is often challenged by a large amount of samples submitted from wafer fabrication areas and specific-spot analysis. Improving the TEM sample preparation techniques for a fast turnaround time is critical in order to provide a timely support for customers and improve the utilization of TEM. For the specific-area sample preparation, a technique which can be easily prepared with the least amount of effort is preferred. For these reasons, we have developed several techniques which have greatly facilitated the TEM sample preparation.For specific-area analysis, the use of a copper grid with a small hole is found to be very useful. With this small-hole grid technique, TEM sample preparation can be proceeded by well-established conventional methods. The sample is first polished to the area of interest, which is then carefully positioned inside the hole. This polished side is placed against the grid by epoxy Fig. 1 is an optical image of a TEM cross-section after dimpling to light transmission.


Author(s):  
Terrence Reilly ◽  
Al Pelillo ◽  
Barbara Miner

The use of transmission electron microscopes (TEM) has proven to be very valuable in the observation of semiconductor devices. The need for high resolution imaging becomes more important as the devices become smaller and more complex. However, the sample preparation for TEM observation of semiconductor devices have generally proven to be complex and time consuming. The use of ion milling machines usually require a certain degree of expertise and allow a very limited viewing area. Recently, the use of an ultra high resolution "immersion lens" cold cathode field emission scanning electron microscope (CFESEM) has proven to be very useful in the observation of semiconductor devices. Particularly at low accelerating voltages where compositional contrast is increased. The Hitachi S-900 has provided comparable resolution to a 300kV TEM on semiconductor cross sections. Using the CFESEM to supplement work currently being done with high voltage TEMs provides many advantages: sample preparation time is greatly reduced and the observation area has also been increased to 7mm. The larger viewing area provides the operator a much greater area to search for a particular feature of interest. More samples can be imaged on the CFESEM, leaving the TEM for analyses requiring diffraction work and/or detecting the nature of the crystallinity.


Author(s):  
Qiang Gao ◽  
Mark Zhang ◽  
Ming Li ◽  
Chorng Niou ◽  
W.T. Kary Chien

Abstract This paper examines copper-interconnect integrated circuit transmission electron microscope (TEM) sample contamination. It investigates the deterioration of the sample during ion milling and storage and introduces prevention techniques. The paper discusses copper grain agglomeration issues barrier/seed step coverage checking. The high temperature needed for epoxy solidifying was found to be harmful to sidewall coverage checking of seed. Single beam modulation using a glass dummy can efficiently prevent contamination of the area of interest in a TEM sample during ion milling. Adoption of special low-temperature cure epoxy resin can greatly reduce thermal exposure of the sample and prevent severe agglomeration of copper seed on via sidewall. TEM samples containing copper will deteriorate when stored in ordinary driers and sulphur contamination was found at the deteriorated point on the sample. Isolation of the sample from the ambient atmosphere has been verified to be very effective in protecting the TEM sample from deterioration.


1997 ◽  
Vol 480 ◽  
Author(s):  
Helen L. Humiston

AbstractThe complex materials systems in VLSI devices require specialized preparation techniques for TEM microstructural analysis. For this purpose, it is desirable to obtain electron transparency in all material layers from the oxides used in dielectrics to refractory metals such as tungsten. The primary advantage of dimpling these materials is that ideal specimens are obtained for low angle ion milling. By dimpling both sides of the cross section with a padded flatting tool, a thicker specimen of 130μm at the outer rim of the 3mm disc is produced that narrows to the 125nm thickness fringes in the center. These samples do not require a copper support grid, thereby allowing for a lower milling angle of 2.5 degrees on both sides of the specimen. This technique provides a cross section that is electron transparent in all layers without the loss of oxides due to differential thinning rates of various materials at higher milling angles.It is generally thought that precision thinning through a submicron feature is not possible on the dimpler. However, a simple step-by-step procedure for this technique will be demonstrated and discussed.


Sign in / Sign up

Export Citation Format

Share Document