An X-ray diffraction system with controlled relative humidity and temperature

1996 ◽  
Vol 11 (4) ◽  
pp. 288-289 ◽  
Author(s):  
H. Hashizume ◽  
S. Shimomura ◽  
H. Yamada ◽  
T. Fujita ◽  
H. Nakazawa ◽  
...  

A system enabling X-ray diffraction patterns under controlled conditions of relative humidity and temperature has been devised and combined with an X-ray powder diffractometer. Relative humidity in the sample space is controlled by mixing dry N2 gas with saturated water vapor. Temperatures of the sample and inner wall of the sample chamber are monitored by two attached thermocouples and the information was fed back to the control unit. Relative humidity between 0% and the 95%, and temperature between room temperature and 60 °C can be controlled. All parameters including those for XRD are programmable and the system runs automatically. The function of the system was checked by recording the XRD patterns of montmorillonite (a clay mineral) and NaCl under increasing and decreasing relative humidity.

2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


1974 ◽  
Vol 29 (12) ◽  
pp. 1771-1777 ◽  
Author(s):  
N. C. Haider ◽  
S. H. Hunter

Powder Cd of 99.999% purity was prepared at room temperature (25 °C) and x-ray diffraction patterns were obtained using CuKaα radiation with Ni-filter. The line broadening was analyzed after incorporating the appropriate correction factors. At room temperature Cd was found to have large particle size (653 A), small root mean square strain (.001), small deformation fault probability a (.003). and negligible growth fault probability β(0). Compared to other hep metals which have been studied earlier and which have higher melting temperatures, metal Cd is much less affected by mechanical deformation at room temperature.


2013 ◽  
Vol 12 (01) ◽  
pp. 1350006
Author(s):  
AHMED E. HANNORA ◽  
FARIED F. HANNA ◽  
LOTFY K. MAREI

Mechanical alloying (MA) method has been used to produce nanocrystallite Mn -15at.% Al alloy. X-ray diffraction (XRD) patterns for the as-milled elemental α- Mn and aluminum powder samples show a mixture of α + β- MnAl phases after 20 h of milling and changes to a dominant β- MnAl phase structure after 50 h. An average crystallite size of 40 nm was determined from Hall–Williamson method analysis after 5 h of milling. Moreover, the thermal analysis results using differential thermal analysis (DTA), suggested a possible phase transformation after 20 h of milling. Isothermal treatments are carried in the temperature range of 450°C to 1000°C. Room-temperature vibrating sample magnetometer (VSM) measurements of the hysteretic response revealed that the saturation magnetization Bs and coercivity Hc for 10 h ball milled sample are ~ 2.1 emu/g and ~ 92 Oe, respectively.


1964 ◽  
Vol 42 (10) ◽  
pp. 1886-1889 ◽  
Author(s):  
B. Swaroop ◽  
S. N. Flengas

The crystal structure of zirconium trichloride was determined from X-ray diffraction patterns. Zirconium trichloride belongs to the [Formula: see text]space group. The dimensions of the main cell at room temperature are: a = 5.961 ± 0.005 Å and c = 9.669 ± 0.005 Å.The density of zirconium trichloride was measured and gave the value of 2.281 ± 0.075 g/cm3 while, from the X-ray calculations, the value was found to be 2.205 g/cm3.


2012 ◽  
Vol 29 (1) ◽  
pp. 50
Author(s):  
D.N Ba ◽  
L.T Tai ◽  
N.T Trung ◽  
N.T Huy

The influences of the substitution of Ni with Mg on crystallographic and magnetic properties of the intermetallic alloys LaNi5-xMgx (x ≤ 0.4) were investigated. The X-ray diffraction patterns showed that all samples were of single phase, and the lattice parameters, a and c, decreased slightly upon chemical doping. LaNi5 is well known as an exchange-enhanced Pauli paramagnet. Interestingly, in LaNi5-xMgx, the ferromagnetic order existed even with a small amount of dopants; the Curie temperature reached the value of room temperature for x = 0.2, and enhanced with increasing x.


1998 ◽  
Vol 4 (S2) ◽  
pp. 342-343 ◽  
Author(s):  
S. D. Walck ◽  
P. Ruzakowski-Athey

The analysis of Selected Area Diffraction (SAD) patterns that are collected from a single phase material having sufficient crystallites to provide continuous rings is relatively straightforward. However, when this condition is not met and there may be several phases present having rings of a spotty nature, the pattern is complex and can be quite difficult to analyze manually because of the vast number of discrete spots. WinJade from MDI is an X-ray diffraction (XRD) analysis program with an Electron Diffraction Program Module (EDPM) that can be used to aid in the analysis of SAD patterns. The EDPM produces Integrated Circular Density Plots (ICDP), which are one-dimensional intensity profiles plotted as a function of equivalent XRD 20 values or crystal d-spacings. These ICDP's can be overlayed with XRD patterns or with reference lines from the NIST and JCPDS crystalline databases for direct comparisons.


2007 ◽  
Vol 7 (2) ◽  
pp. 525-529 ◽  
Author(s):  
Bo Zhou ◽  
Jun-Jie Zhu

A chemical co-reduction route in aqueous solution was developed to synthesize Bi100−xSbx alloys at room temperature. The hydrolyses of Bi(III) and Sb(III) were effectively avoided by selecting proper raw materials and coordinator. X-ray diffraction analysis indicated that the as-prepared Bi100−xSbx alloys were homogeneous and phase-pure, and the Bi/Sb ratios in the alloys were very close to those in the aqueous solutions. The transmission electron microscope observation showed that the as-prepared Bi100−xSbx (x = 0∼100) alloys were particles with a size of tens of nanometers. The selected area electron diffraction patterns confirmed the high crystallinity, the homogeneousness, and the composition controllability of as-prepared alloys. All these characters and the nanometer-scaled size of the alloys are believed to be beneficial to the thermoelectric property of the Bi100−xSbx alloys.


1997 ◽  
Vol 12 (3) ◽  
pp. 134-135
Author(s):  
Liangqin Nong ◽  
Lingmin Zeng ◽  
Jianmin Hao

The compound DyNiSn has been studied by X-ray powder diffraction. The X-ray diffraction patterns for this compound at room temperature are reported. DyNiSn is orthorhombic with lattice parameters a=7.1018(1) Å, b=7.6599(2) Å, c=4.4461(2) Å, space group Pna21 and 4 formula units of DyNiSn in unit cell. The Smith and Snyder Figure-of-Merit F30 for this powder pattern is 26.7(0.0178,63).


2010 ◽  
Vol 24 (10) ◽  
pp. 945-951 ◽  
Author(s):  
LIWEI WANG ◽  
ZHENG XU ◽  
SULING ZHAO ◽  
LIFANG LU ◽  
FUJUN ZHANG

ZnO : V thin films with different doping concentration (0%, 1.8%, 3.9%, 6.8%, 10%, and 13%) were fabricated by direct current magnetron sputtering. The X-ray diffraction patterns show that the wurzite structure changed with doping concentration. Furthermore, we could not find any vanadium cluster or phase separation in the X-ray diffraction patterns. The photoluminescence of ZnO : V with different vanadium concentration was investigated. The room temperature photoluminescence spectrum indicates that the films have purple band with 370 nm and the bands with 475 and 490 nm. The peak intensity of room temperature photoluminescence spectrum was affected by vanadium contents and its position remained stable. The intensity of band with 370 nm increases with raising the vanadium concentration and then decreases. The hysteresis behavior indicates that films were ferromagnetic at 50 K. Room temperature ferromagnetism was observed for the film with the doping concentration at 6.8%. However, in this case almost no hysteresis is noticeable. The results implied that the doping concentration and crystalline microstructure influence strongly the film's magnetic characteristics. Increasing the vanadium content in the film caused the degradation of the magnetic ordering.


1993 ◽  
Vol 8 (4) ◽  
pp. 240-244 ◽  
Author(s):  
K. D. Rogers

Powder diffraction data for semiconductor and metallic states of vanadium dioxide are presented. The structures are refined by Rietveld methods using a monoclinic cell (a = 5.7529Å, b = 4.5263Å, c = 5.3825Å, β = 122.61°) and space group P21/c for the room temperature data, and a tetragonal cell (a =4.5540Å, c = 2.8557Å) and space group P42/mnm for data collected at 400 K. The similarity between the corresponding X-ray diffraction patterns is discussed. The transition process from the monoclinic to tetragonal phase is investigated and initial evidence for the coexistence of phases over a small temperature range is presented.


Sign in / Sign up

Export Citation Format

Share Document