Optimizing Diluent Volume Improves Johnsongrass Control in Sugarcane (Saccharumsp.) with Asulam

1991 ◽  
Vol 5 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Edward P. Richard

Field studies were conducted in second-ratoon crops of sugarcane infested with rhizome johnsongrass to determine the effects of aqueous diluent volumes ranging from 47 to 561 L ha-1on the performance of asulam. Trend analyses of johnsongrass recovery, based on panicle numbers late in the growing season, indicated a quadratic response with panicle numbers being lowest when asulam at 2.8 kg ai ha-1was applied in a diluent volume approaching 187 L ha-1. The response was similar regardless of whether droplet size or number was altered to obtain these diluent volumes. Differences in late-season johnsongrass control were reflected in harvested sugarcane stalk populations and net cane yields. In greenhouse studies, johnsongrass plants were thoroughly washed with water 24 h after treatment with asulam at 2.8 kg ha-1at water volumes ranging from 47 to 374 L ha-1. Asulam absorption, as evidenced by reduction in the growth of johnsongrass, was higher when surfactant was included, but was not affected by diluent volumes in the range evaluated.

1991 ◽  
Vol 5 (2) ◽  
pp. 396-399 ◽  
Author(s):  
Reed J. Lencse ◽  
James L. Griffin

Field studies were conducted in the northern and southern cane belt areas of Louisiana to determine the effect of itchgrass on sugarcane growth and yield. Itchgrass was allowed to interfere with sugarcane season-long, early-season from emergence in the spring until layby (last cultivation) in mid-June, and late-season from layby until harvest. Itchgrass germination occurred throughout the growing season. Populations of millable sugarcane stalks and yields of cane and sugar were similar for no interference, early-, and late-season interference. Season-long itchgrass interference reduced sugarcane stalk populations and cane and sugar yields an average of 34, 42, and 43%, respectively, compared with no interference.


2022 ◽  
Vol 326 ◽  
pp. 107785
Author(s):  
Linfeng Li ◽  
Yanbin Hao ◽  
Zhenzhen Zheng ◽  
Weijin Wang ◽  
Joel A. Biederman ◽  
...  

Author(s):  
Laísa S. Antoniel ◽  
Giuliani do Prado ◽  
Adriano C. Tinos ◽  
Gabriel A. Beltrame ◽  
João V. C. de Almeida ◽  
...  

ABSTRACT This study aimed to evaluate the production of two pasture species, Brachiaria brizantha cv. BRS Piatã and Panicum maximum cv. Mombaça, under different irrigation depths. The experiment was carried out from May to December 2014, at the State University of Maringá, in the municipality of Cidade Gaúcha-PR, Brazil. The experiment was set out in a strip-plot design, with four replicates, six irrigation depths in the plot and two pasture species in the subplot. Irrigation depths were represented by a percentage of reference evapotranspiration (ET0), which was estimated by the Penman-Monteith equation. Four pasture cuts were performed during the studied period and there were no differences between the yields of both evaluated pasture species; however, irrigation depths caused a quadratic response on pasture yield. The maximum values of dry matter yield of the pastures under irrigated conditions were 52.1, 41.6, 26.2 and 25.1% higher than under non-irrigated conditions, for the 1st, 2nd, 3rd and 4th cuts, respectively. Irrigation depths that applied water volumes close to ET0 promoted considerable increases in pasture yield.


1971 ◽  
Vol 49 (10) ◽  
pp. 1821-1832 ◽  
Author(s):  
Edward Sucoff

During the 1969 and 1970 growing season buds were collected almost weekly from matched trees in northeastern Minnesota. Cataphyll primordia for the year n + 1 shoot began forming at the time that internodes in the year n shoot started elongating (late April) and continued forming until early September. Primordia for axillary buds started forming about 2 months later and stopped forming at the same time as cataphylls. The size and deposition activity of the apical dome simultaneously increased during the early growing season and decreased during the late season. The maximum rates in July were over nine cataphylls per day.Rate of cataphyll deposition paralleled elongation of the needles on subtending shoots. Forty to fifty percent of the cataphylls had been formed when shoot growth was 95% complete. Although the bulk of the depositions occurred earlier in 1970, when growing degree days were used as the clock, the 2 years were similar.The results provide quantitative data to complement the histologic emphasis of previous studies.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 158
Author(s):  
John L. Havlin ◽  
Robert Austin ◽  
David Hardy ◽  
Adam Howard ◽  
Josh L. Heitman

With limited research supporting local nutrient management decisions in North Carolina grape (Vitis vinifera) production, field studies (2015–17) were conducted to evaluate late season foliar nitrogen (N) application on leaf and petiole N concentration and yeast assimilable N (YAN) in the fruit. Foliar urea (1% v/v) was applied at different rates and application times beginning pre-and post-veraison. Compared to soil applied N, late season foliar N substantially enhanced petiole N and grape YAN. Smaller split N applications were generally more effective in increasing YAN than single larger N rates. These data demonstrate the value of assessing plant N content at full bloom with petiole N analysis or remote sensing to guide foliar N management decisions. Additional field studies (2008–11) were conducted to evaluate pre-bud soil applied phosphorus (P) and potassium (K) effects on petiole P and K nutrient status. Fertilizer P and K were initially broadcast applied (0–896 kg P2O5 ha−1; 0–672 kg K2O ha−1) prior to bud-break in 2008–09 and petiole P and K at full bloom soil test P and K were monitored for three to four years after application. Soil test and petiole P and K were significantly increased with increasing P and K rates, which subsequently declined to near unfertilized levels over the sampling time depending on site and P and K rate applied. These data demonstrate the value of annually monitoring petiole P and K levels to accurately assess plant P and K status to better inform nutrient management decisions.


Author(s):  
V. A. Petruk

The results of field studies for 2017 - 2019 are presented. yields of perennial grasses sown at different times of the growing season. Spring, summer, and winter sowing periods were compared. Alfalfa, clover, rump, and also their mixtures were sown in 2017 under the cover of barley. The value of the cover crop yield of spring and summer sowing periods did not differ significantly and amounted to 4-5 t / ha of absolutely dry matter. Winter barley crops have not formed. On average, over 2 years of use, the highest yields were observed in alfalfa-crust grass mixtures - 3.4 t / ha of absolutely dry matter. The lowest yield was obtained in the single-species seeding of the rump. Correspondingly, in the spring, summer and winter periods of sowing, the yield of rump was 1.6; 1.1 and 1.3 t / ha. With a late sowing period, the yield of perennial grasses is significantly lower compared to spring and summer. With winter sowing periods, the yield was the highest for grass stands of alfalfa and alfalfacrust grass mixture - 2.3 and 2.4 t / ha. It should be noted that in the second year of use, the yield by the sowing dates in single-species crops and grass mixtures is leveled. The winter crops of perennial grasses in the first year of use formed a low yield. Only in the second year (third year of life) the productivity of perennial grasses of winter sowing began to increase. Consequently, in the area under perennial grasses of the winter sowing period, during one growing season (the next year after sowing), the crop was not actually formed. Based on the data obtained, production can be recommended for spring and summer planting of perennial grasses under the cover of barley. The winter sowing period provides economically valuable crop yields only by the third year of life.


1958 ◽  
Vol 38 (2) ◽  
pp. 188-198 ◽  
Author(s):  
D. C. Read

Examinations of more than 100 rutabaga fields per year, from 1951 to 1955, showed that Hylemya brassicae (Bouché) was the only species of root maggot that injured rutabagas in Prince Edward Island. H. liturata (Mg.) (= H. trichodactyla (Rond.)), H. cilicrura (Rond.), and Muscina stabulans (Fall.) were associated with H. brassicae but did not injure the roots. H. brassicae flies [note Whitcomb (12) for illustrations] began to emerge from overwintered puparia early in June in sandy soil areas and late in July in clay loam areas. Heavy texture and high moisture content of soils were closely correlated with the delay in emergence. The flies laid their eggs near rutabaga plants, usually in crevices in the soil, and upon hatching the larvae entered and fed on the roots. Larvae generally entered the roots at a depth of one inch or more below the surface of the soil. In general, early-planted rutabagas in sandy soil areas and late plantings in clay loam areas were severely damaged by larvae of H. brassicae, whereas late plantings in sandy areas and early plantings in clay loam areas were lightly infested. However, in the sandy soil areas where all of the rutabaga crops were harvested early in August damage was relatively light. Also, fields isolated by other rutabaga fields from sources of infestation such as storage bins and infested rutabaga crops, of either the current or the previous season, were usually slightly damaged. Use of barnyard manure increased H. brassicae infestations early in the season but did not significantly influence the damage caused during the whole growing season.


1998 ◽  
Vol 23 (1) ◽  
pp. 245-246
Author(s):  
T. G. Teague ◽  
N. P. Tugwell

Abstract Field studies were conducted at the Cotton Branch Experiment Station in Marianna, AR to evaluate the late-season control of TPB. Cotton was planted 12 May in 8-row (38-inch centers) wide by 70-ft-long plots with 10-ft alleys and separated by a 6.5-ft non-planted buffer. The treatments were arranged in a RCBD with 4 replications. The insecticides were applied 14 Aug using a 8-row CO2-charged hi-boy sprayer calibrated to deliver 9.5 gpa at 30 psi with TJ-60 8002 VS nozzles on 19-inch spacing. The numbers of TPB nymphs and adults per plot were estimated 4 DAT using 24 sweeps with one 18-inch net. Numbers of TPB 4 DAT were significantly reduced in all plots sprayed with insecticides compared with the untreated check. Control with the CS formu-lation of Karate was reduced compared with the EC formulation.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
W. James Grichar ◽  
Jack J. Rose ◽  
Peter A. Dotray ◽  
Todd A. Baughman ◽  
D. Ray Langham ◽  
...  

Growth chamber experiments were conducted to evaluate the response of sesame to PRE and POST applications of soil residual herbicides. PRE applications of acetochlor andS-metolachlor at 1.26 and 1.43 kg ai·ha−1showed little or no sesame injury (0 to 1%) 4 wks after herbicide treatments (WAT). POST treatments of acetochlor and trifluralin made 3 wks after planting (WAP) resulted in greater sesame injury (40%) compared to applications at bloom (18%). Field studies were conducted in Texas and Oklahoma during the 2014 and 2015 growing seasons to determine sesame response to clethodim, diuron, fluometuron, ethalfluralin, quizalofop-P, pendimethalin, pyroxasulfone, trifluralin, and trifloxysulfuron-sodium applied 2, 3, or 4 weeks after planting (WAP). Late-season sesame injury with the dinitroaniline herbicides consisted of a proliferation of primary branching at the upper nodes of the sesame plant (in the shape/form of a broom). Ethalfluralin and trifluralin caused more “brooming” effect than pendimethalin. Some yield reductions were noted with the dinitroaniline herbicides. Trifloxysulfuron-sodium caused the greatest injury (up to 97%) and resulted in yield reductions from the untreated check. Early-season diuron injury (leaf chlorosis and necrosis) decreased as application timing was delayed, and late-season injury was virtually nonexistent with only slight chlorosis (<4%) still apparent on the lower leaves. Sesame yield was not consistently affected by the diuron treatments. Fluometuron caused early-season injury (stunting/chlorosis), and a reduction of yield was observed at one location. Pyroxasulfone applied 2 WAP caused up to 25% sesame injury (stunting) but did not result in a yield reduction. Quizalofop-P caused slight injury (<5%) and no reduction in yield.


Weed Science ◽  
1984 ◽  
Vol 32 (2) ◽  
pp. 226-234 ◽  
Author(s):  
Frank L. Young ◽  
Donald L. Wyse ◽  
Robert J. Jones

Field studies were conducted to evaluate the effect of quackgrass [Agropyron repens(L.) Beauv. ♯ AGRRE] density and soil moisture on corn (Zea maysL.) growth and yield. Quackgrass densities ranging from 65 to 390 shoots/m2reduced corn yield 12 to 16%. A quackgrass density of 745 shoots/m2reduced corn yields an average of 37% and significantly reduced corn height, ear length, ear-fill length, kernels/row, rows/ear, and seed weight. In the soil moisture study, quackgrass was shorter than corn throughout the growing season, and analyses of corn leaf tissue indicated that quackgrass did not interfere with the nutrient status of the corn. In 1979, soil moisture was not limiting and corn yields were similar in all treatments regardless of irrigation or the presence of quackgrass. In 1980, soil moisture was limited and irrigation increased the yield of quackgrass-free corn. Irrigation also increased the yield of quackgrass-infested corn to a level similar to irrigated corn. When light and nutrients are not limiting factors, an adequate supply of soil moisture can eliminate the effects of quackgrass interference on the growth, development, and yield of corn.


Sign in / Sign up

Export Citation Format

Share Document