Cotton (Gossypium hirsutum) Development and Yield Following Fluometuron Postemergence Applied

1989 ◽  
Vol 3 (3) ◽  
pp. 501-504 ◽  
Author(s):  
David S. Guthrie ◽  
Alan C. York

Fluometuron at 1.1 kg ai/ha was applied postemergence (over-the-top) to cotton in the V3 to V4 stage to determine effects on flower and boll production, yield, and fiber quality. Treated plants produced more bolls but boll weight was reduced. Lint yield was not affected. Flower and boll production during the first 2 weeks of flowering were reduced, but treated plants produced more flowers and bolls during mid- and late bloom. A delay in sympodia development delayed development of fruiting structures. Fluometuron treatment promoted sympodia development on monopodia at nodes three and four. Fiber micronaire was reduced in 1 of 2 yr. Fiber strength, length, and length uniformity were not affected.

1993 ◽  
Vol 7 (1) ◽  
pp. 159-162 ◽  
Author(s):  
David L. Jordan ◽  
Robert E. Frans ◽  
Marilyn R. McClelland

Field experiments were conducted from 1989 through 1991 to determine the effect of DPX-PE350 applied postemergence over-the-top on cotton yield and fiber quality. DPX-PE350, at rates ranging from 50 to 280 g ae ha−1applied to cotton in the VC to R6 growth stages, had no adverse effect on seed cotton yield, micronaire, fiber length, fiber length uniformity, or fiber strength. Cotton injury was 10% or less in all experiments.


2020 ◽  
Vol 10 (2) ◽  
pp. 66
Author(s):  
. HASNAM ◽  
EMY SULISTYOWATI ◽  
SIWI SUMARTINI ◽  
FITRINTNGDYAH TRI KADARWATI ◽  
PRIMA D. RIAJAYA

<p>Tujuan utama pemuliaan kapas di Indonesia adalah meningkatkan produktivitas dan kualitas serat dalam upaya meningkatkan pendapatan petani dan memperbaiki mutu benang tcnun seta kualitas tekstil yang harus bersaing di pasar internasional. Scjumlah enam persilangan telah dilakukan antara dua varietas dai India. I.RA 5166 dan SRT-1 dengan dua varietas dai Amerika Serikat, Dcltapine 55 dan Deltapinc Acala 90 dan satu vaietas dai Australia, Siokra. Seleksi individu, seleksi galur dan seleksi individu dalam galur dilaksanakan pada generasi F2 sampai F5 berdasarkan jumlah buah, tingkat kerusakan daun terhadap Sundapteryx biguttula. dan mutu serat; semua proses di atas dilakukan pada kondisi lahan tadah hujan, dan tanpa penggunaan insektisida terhadap tanaman; dari proses di atas diperoleh 12 galur harapan. Sejumlah 13 percobaan dilakukan antara tahun 1993 sampai dengan 2001 untuk mengamati kcragaan galur-galur baru tersebut; pengujian dilakukan di Jawa Timur dan Sulawesi Selatan, menggunakan teknik-teknik penelitian standar. Dengan proscdur ini dapat diidcntifikasi beberapa galur yang menunjuk¬ kan perbaikan serenlak hasil dan kualitas serat kapas. Beberapa penelitian juga dilakukan untuk mcngcvaluasi tanggap galur-galur tersebut pada tumpangsari dengan kedelai dan kacang hijau di Jawa Timur. Dua galur, 88003/16/2 dan 92016/6 (sudah dilepas dengan nama vaietas Kanesia 8 dan Kanesia 9 pada bulan Juni 2003), menunjukkan produktivitas dan kualitas serai yang lebih linggi. Rata-rata, kedua vaietas menghasilkan 1.85 ton dan 191 ton kapas berbiji per hektar atau 8-12% lebih tinggi dai hasil vaietas Kanesia 7 yang sudah dilepas sebelumnya. Persentase serat 35.2%, kekuatan serat berkisar antara 22.6-24.7 gram tex'1, serat lebih panjang dan berkisar 29.2-30.3 mm sedangkan angka mikroncr lebih rendah yang menyatakan bahwa serat lebih halus. Semua perbaikan di atas menunjukkan perbaikan mutu serat. Kanesia 8 dan Kanesia 9 juga menunjukkan peningkatan ketahanan terhadap Sundapteryx biguttula dan komplcks hama kapas. Kanesia 8 dan Kanesia 9 kurang kompctitif dalam tumpang sari dengan kedelai jika dibandingkan dengan Kanesia 7. Pada tumpang sari dengan kacang hijau Kanesia 8 juga mengalami kehilangan hasil yang tinggi, sedangkan Kanesia 9 menunjukkan toleransi yang tinggi dalam kompctisi dengan kacang hijau. Pelepasan Kanesia 8 dan Kanesia 9 akan memberikan pilihan varietas yang lebih banyak bagi petani dan perusahaan pemintalan untuk menyesuaikan dengan produk akhirnya.</p><p>Kata kunci : Gossypium hirsutum, prosedur pemuliaan, produktivitas, kualitas serat, Sundapteryx biguttula, tumpangsari</p><p> </p><p><strong>ABSTRACT </strong></p><p><strong>Genetic improvement on two new cotton varieties, Kanesia 8 and Kanesia 9</strong></p><p>The main objective of cotton breeding in Indonesia is to improve productivity and fiber quality which is aimed to increase farmers' income and to make beter yam and textile quality that has to compete in international market Six crosses were made between two Indian varieties, LRA 5166 and SRT-1 with two USA vaieties, Deltapine 55 and Deltapinc Acala 90 and one Australian variety, Siokra. Individual plants, lines and individual within lines were selected on F2-F5 generations based on boll- counts, leaf-damage by jassids and fiber traits, those were conducted under rainfed and insecticide-ree condition; twelve promising lines were produced from this process. A total of 13 trials were carried out to observe performance of these new lines during 1993 to 2001; those were located in East Java and South Sulawesi using the standardized experimental techniques. By these procedures make it possible to identify several breeding lines showing simultaneous improvement in yield and fiber quality. Several tests were also made to evaluate response of those lines under intercropping with soybean and mungbean, which were located in East Java. Two breeding lines, 88003/16/2 and 92016/6 (those have been released as Kanesia 8 and Kanesia 9 in 2003), showed higher productivity and fiber quality. In average, these new vaieties produced 1.85 and 1.91 ton ha'1 seed cotton respectively or 8 to 12% higher than those on Kanesia 7, the previously released vaiety. Lint turn-out was 35.2% fiber-strength was varied from 22.6 to 24.7 gram tex'1 , fiber lengths ranged from 29.2 to 30.3 mm with lower micronaire-valucs indicating better fiber-ineness. All of those improvements represented a trend toward a higher quality iber. Kanesia 8 and Kanesia 9 also showed a slight improvement in resistance to jasssids and insect pest-complex. Kanesia 8 and Kanesia 9 performed lower competitive ability under intercropping with soybean in comparison with Kanesia 7. Under intercropping with mungbean Kanesia 8 also suffered high yield loss, wherein Kanesia 9 showed good tolerance to mungbean. The release of Kanesia 8 and Kanesia 9 is expected to give a broader choice for the cotton growers and spinning-mills to match with their inal product.</p><p>Key words: Coton (Gossypium hirsutum), breeding procedure, productivity, liber quality, Sundapteryx bigullul. inter¬ cropping.</p>


2020 ◽  
Author(s):  
Irum Raza ◽  
Dao-Wu Hu ◽  
Adeel Ahmad ◽  
Hongge Li ◽  
Shou-Pu He ◽  
...  

Abstract Background Stem hardness is one of the major influencing factors for plant architecture in upland cotton (Gossypium hirsutum L.). Evaluating hardness phenotypic traits is very important for the selection of elite lines for resistance to lodging in Gossypium hirsutum L. Cotton breeder are interested in using diverse genotypes to enhance fiber quality and high-yield. The research for hardness and its relation with fiber quality and yield were very few. This study was designed to find the relationship of stem hardness traits with fiber quality and yield contributing traits of upland cotton. Results Experiments were carried out to measure the bending, acupuncture, and compression properties of the stem from a collection of upland cotton genotypes, comprising 237 accessions. The results showed that the genotypic difference in stem hardness was highly significant among the genotypes, and the stem hardness traits (BL, BU, AL, AU, CL, and CU) have a positive association with fiber quality traits and yield-related traits. Statistical analyses of the results showed that bending (BL, BU) has a maximum coefficient of variance and trait fiber length and fiber strength have less coefficient of variance among the genotypes. Principal component analysis (PCA) reduced quantitative characters into nine principal components. The first nine principal components (PC) with Eigenvalues >1 explained 86% of the variation among 237 accessions of the cotton crop. Both 2017& 2018, PCA results indicated that BL, BU, FL, FE, and LI variables contributed their variability in PC1 and BU, AU, CU, FD, LP, and FWPB have shown their variability in PC2. Conclusion We describe here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of enhancing fiber quality and yield by stem bending strength, acupuncture, and compression properties of Gossypium hirsutum crop.


Weed Science ◽  
1989 ◽  
Vol 37 (5) ◽  
pp. 688-694 ◽  
Author(s):  
Eric P. Castner ◽  
Don S. Murray ◽  
Neil M. Hackett ◽  
Laval M. Verhalen ◽  
David L. Weeks ◽  
...  

The effects of hogpotato interference on cotton and of the crop on the weed were measured under field conditions in four environments. Full-season interference from 105 ± 21 hogpotato plants/m2reduced cotton plant height by 14 to 44%. Conversely, weed dry weight was reduced 54% through full-season interference from cotton. Lint yield reductions in cotton ranged from 31 to 98% following full-season weed interference. Interference during the first 7 weeks of crop growth reduced lint yield by approximately 40%; however, interference after 7 weeks of weed-free maintenance did not affect lint yield. Interference reduced boll size in 3 of 4 yr, lint percent in 2 of 4, and boll number in the only year it was measured. Cotton fiber length, uniformity index, and micronaire were reduced by full-season interference in 1 of 2 yr; however, fiber strength was not affected in either year. Significant use of soil water by hogpotato occurred at 120 cm and deeper in the soil while cotton used water primarily in the upper 75 cm.


2021 ◽  
Vol 21 (No.1) ◽  
Author(s):  
Max Mariz ◽  
Reham Gibely ◽  
Abdelmoghny AM

The aim of this study was to investigate the relationship between specific combining ability, genetic diversity of parents and heterosis over better parent effects. This research, having eighteen F1 crosses derived from crossing between six lines and three testers, was conducted in order to estimate combining ability, to determine the nature of gene action and heterosis for yield and fiber quality traits and to detect the appropriate crosses for cotton breeding program. The experiment was conducted on randomized complete block design with three replications. The analyses of variance showed significant differences among the genotypes, parents (lines and testers) and crosses for all the studied traits. Estimates of both general and specific combining ability effects were significant for most traits, indicating the importance of both additive and non-additive gene effects for these traits. While, specific was higher than general combining ability variances, for all traits, showing non-additive gene action controlling and therefore, heterosis breeding may be rewarding. The heterosis value varied from cross to cross and from trait to trait. This dissimilarity coefficient was ranged from 3.234 between Giza 85 and Giza 80 to 71.002 between Giza 96 and 10229. Association between heterosis over better parent and specific combining ability was positive and significant for all the studied traits except lint yield / plant. No correlations were found between SCA and GD for all the studied traits. Similarly, heterosis effects was negatively significantly correlated with GD only in the case of boll weight, lint yield / plant and uniformity ratio %, while showed positive and significant correlation for fiber strength and micronaire value. Four crosses showed both positive and significant heterosis and specific combining ability for most yield traits. The parents of these crosses belong to different clusters. Crossing diverse parents could produce high heterotic performance in hybri


2020 ◽  
Author(s):  
Irum Raza ◽  
Dao-Wu Hu ◽  
Adeel Ahmad ◽  
Hongge Li ◽  
Shou-Pu He ◽  
...  

Abstract Background Stem hardness is one of the major influencing factors for plant architecture in upland cotton (Gossypium hirsutum L.). Evaluating hardness phenotypic traits is very important for the selection elite lines for resistant to lodging in Gossypium hirsutum L. Cotton breeder are interested in using diverse genotypes to enhance fibre quality and high- yield. The research for hardness and its relation with fiber quality and yield were very few. This study was designed to find the relationship of stem hardness traits with fiber quality and yield contributing traits of upland cotton. Results Experiments were carried out to measure the bending, acupuncture and compression properties of stem from a collection of upland cotton genotypes, comprising 237 accessions. The results showed that the genotypic difference in stem hardness were highly significant among the genotypes, and the stem hardness traits (BL, BU, AL, AU, CL and CU) have a positive association with fiber quality traits and yield related traits. In descriptive statistics result bending (BL, BU) have maximum coefficient of variance and trait fiber length and fiber strength have less coefficient of variance among the genotypes. Principal component analysis (PCA) reduced quantitative characters into nine principal components. The first nine principal components (PC) with Eigen values >1 explained 0.86% of variation among 237 accessions of cotton crop. Both 2017& 2018, PCA results indicated that BL, BU, FL, FE and LI variables contributed their variability in PC1 and BU, AU, CU, FD, LP and FWPB have shown their variability in PC2. Conclusion We describe here, to the best of our knowledge, the systematic study of the mechanism involved in the regulation of enhancing fiber quality and yield by stem bending strength, acupuncture and compression properties of Gossypium hirsutum crop.


2010 ◽  
Vol 25 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Dimitrios Bilalis ◽  
Sotiria Patsiali ◽  
Anestis Karkanis ◽  
Aristidis Konstantas ◽  
Marios Makris ◽  
...  

AbstractOrganic cotton is a new industrial crop product. Field experiments were conducted to determine the effects of cultural systems and varieties on the growth, fiber quality and yield components of cotton crop (Gossypium hirsutum L.). The experiments, conducted during 2006 and 2007, were laid out in a split plot design with four replicates, two main plots (organic and conventional system) and two sub-plots (cotton varieties: Athena and Campo). There were no significant differences between the organic and conventional system for cotton growth, yield and fiber quality. The results suggest that the soil N released from both the inorganic (80:40:40 kg ha−1 N:P2O5:K2O) and organic pool (green manure) were sufficient to maintain good growth. Inferior-quality fiber was produced in the variety. Campo, which had the lowest fiber fineness (micronaire), strength, length and reflection. In addition, this variety had the highest fiber elongation and yellowness. There were no significant differences between varieties as far as uniformity and leaf trash ratio are concerned. A positive correlation was observed between fiber strength and length. However, a negative correlation was found between lint yield and fiber strength.


Weed Science ◽  
1987 ◽  
Vol 35 (6) ◽  
pp. 807-812 ◽  
Author(s):  
Kay L. Mercer ◽  
Don S. Murray ◽  
Laval M. Verhalen

Full-season interference from unicorn-plant [Proboscidea louisianica(Mill.) Thell. # PROLO] at densities ranging from 0 to 32 weeds/10 m row was measured on weed and cotton (Gossypium hirsutumL. ‘Westburn M′) parameters in three Oklahoma environments. Linear regression models using log10transformations were superior to linear and comparable to quadratic models in estimating the impact of inter- and intraspecific competition. Weed measurements on an individual plant basis were not reliable indicators of interference. Weed dry biomass, ground cover, and seed capsule production/plot generally increased with increasing weed densities. In the three environments, densities of two, four, and eight weeds/10 m row initially reduced cotton plant height. Maximum height reductions averaged 20, 28, and 43% in the three environments but did not detrimentally affect the mechanical harvest of cotton. As unicorn-plant density (expressed in log10units) doubled (within a range of 1 to 32 plants/10 m of row), lint yield reductions ranged from 84 to 146 kg/ha. Maximum lint yield losses averaged 59, 65, and 74% in the three environments. Transforming lint yield/plot to a percentage of that from weed-free plots resulted in a single quadratic equation applicable over environments. Unicorn-plant at the highest weed density reduced fiber fineness, uniformity, and length, but not fiber strength.


2021 ◽  
Author(s):  
Xiaoli Geng ◽  
Yujie Qu ◽  
Yinhua Jia ◽  
Shoupu He ◽  
Zhaoe Pan ◽  
...  

Abstract Background: Heterosis has been extensively utilized in different crops and made a significant contribution to global food security. Genetic distance (GD) is one of the valuable criteria for selecting parents in hybrid breeding. The objectives of this study were to estimate the GD between parents using both simple sequence repeat (SSR) markers and single nucleotide polymorphism (SNP) markers and to investigate the efficiency of the prediction of hybrid performance based on GD. The experiment comprised of four male parents, 282 female parents and 1128 F1, derived from NCII mating scheme. The hybrids, their parents and two check cultivars were evaluated for two years. Performance of F1, mid-parent heterosis (MPH), and best parent heterosis (BPH) were evaluated for ten agronomic and fiber quality traits, including plant height, boll weight, boll number, lint percentage, fiber length, fiber strength, fiber uniformity, fiber elongation ratio, micronaire, and spinning consistent index. Results: Heterosis was observed in all hybrids and, the traits like plant height, boll number, boll weight and lint percentage exhibited higher heterosis than the fiber quality traits. Correlations were significant between parental and F1 performances. The F­1 performances between three hybrid sets (Elite×Elite, Exotic×Elite, and Historic×Elite) showed significant differences in eight traits, including boll number, lint percentage, fiber length, fiber strength, fiber uniformity, fiber elongation ratio, micronaire, and spinning consistent index. The correlation of the GD assessed by both SSR and SNP markers was significantly positive. The cluster analysis based on GD results estimated using SNP showed that all the female parents divided into five groups and the F1 performance between these five groups showed significant differences in four traits, including lint percentage, micronaire, fiber strength, and fiber elongation ratio. The correlation between GD and F1 performance, MPH and BPH were significant for lint percentage and micronaire. Conclusions: Our results suggested that GD between parents could be helpful in heterosis prediction for certain traits. This study reveals that molecular marker analysis can serve as a basis for assigning germplasm into heterotic groups and to provide guidelines for parental selection in hybrid cotton breeding.


Sign in / Sign up

Export Citation Format

Share Document