Interference of Purple Nutsedge (Cyperus rotundus) Population Densities on Bell Pepper (Capsicum annuum) Yield as Influenced by Nitrogen

1998 ◽  
Vol 12 (2) ◽  
pp. 230-234 ◽  
Author(s):  
Jose P. Morales-Payan ◽  
Bielinski M. Santos ◽  
William M. Stall ◽  
Thomas A. Bewick

Additive series studies were conducted under greenhouse conditions to determine the effects of nitrogen (N) rate and purple nutsedge densities on the yield of ‘California Wonder’ bell pepper. Initial densities of purple nutsedge were 0, 100, 200, and 300 plants/m2. Nitrogen was applied at 70, 140, and 210 kg/ha. Plants were allowed to interfere for 10 wk. There were significant purple nutsedge population density by N rate interactions on bell pepper fruit yield. At 70 kg N/ha, no significant effect of weed population densities was found on fruit yield, whereas at the rates of 140 and 210 kg N/ha there were significant nutsedge density effects. As N rates and nutsedge densities increased, so did purple nutsedge biomass. Linear regression models described the interference. Bell pepper fruit yield reduction was 73% at 210 kg N/ha with an initial nutsedge population density of 300 plants/m2.

HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 431C-431 ◽  
Author(s):  
J.P. Morales-Payan ◽  
W.M. Stall ◽  
D.G. Shilling ◽  
J.A. Dusky ◽  
T.A. Bewick

Field trials were conducted in Gainesville, Fla., to determine the influence of nitrogen fertilization on the interference effect of purple or yellow nutsedge on the yield of fresh tomato. Nitrogen (N) rates of 50, 100, 150, 200, 250, 300, and 350 kg·ha–1 were applied broadcast to the soil. Before transplanting, 1-m-wide soil beds were covered with plastic and fumigated with methyl bromide to suppress the growth on undesired weeds. Nutsedge-free and purple or yellow nutsedge-infested tomato plots were separately established. `Solar Set' tomatoes were transplanted in the middle of the soil beds, 50 cm apart in a single row. In nutsedge-infested plots, weed densities known to cause significant yield reduction in tomato (100 purple nutsedge plants/m2 and 50 yellow nutsedge plants/m2) were uniformly established perforating the plastic and transplanting viable tubers in the perforations. Purple and yellow nutsedge tubers were transplanted the same day as tomatoes and were allowed to interfere during the whole crop season. Results indicate that N rates had a significant effect on tomato fruit yield in both nutsedge-free and nutsedge-infested treatments. The presence of either purple or yellow nutsedge significantly reduced the fruit yield of tomato at all N rates. As N rates increased, tomato fruit yield reduction caused by the interference of either nutsedge species also increased. When yellow nutsedge was allowed to interfere with tomato, fruit yield loss was as low as 18% at 50 kg N/ha and as high as 42% at 350 kg N/ha. In purple nutsedge-infested tomato, fruit yield reductions ranged from 10% at 50 kg N/ha to 27% at 350 kg N/ha. N effects on nutsedge-free and nutsedge-infested tomato yields were described by quadratic equations, with maximum tomato fruit yield values being reached between 200 and 250 kg N/ha in both nutsedge-free and nutsedge-infested treatments.


1997 ◽  
Vol 11 (4) ◽  
pp. 672-676 ◽  
Author(s):  
Jose P. Morales-Payan ◽  
Bielinski M. Santos ◽  
William M. Stall ◽  
Thomas A. Bewick

Additive series experiments were conducted under greenhouse conditions to determine the effect of season-long interference of different initial population densities of purple nutsedge on the shoot dry weight and fruit yield of tomato and bell pepper. Purple nutsedge densities up to 200 plants/m2linearly reduced shoot dry weight at flowering and fruit yield of both crops as weed density increased. Both variables were directly correlated, and for each percentage unit of tomato shoot dry weight loss at flowering, fruit yield was reduced 1.24 units, whereas for bell pepper this relationship was 1 to 2.01. Total shoot and tuber biomass of purple nutsedge increased as density increased. The presence of either crop caused a decline in the total shoot dry weight accumulation of purple nutsedge, with tomato producing a higher degree of loss than bell pepper to the weed. Fruit yield losses due to purple nutsedge interference reached 44% for tomato and 32% for bell pepper.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 431D-431
Author(s):  
J.P. Morales-Payan ◽  
W.M. Stall

Field experiments were conducted in Santo Domingo, Dominican Republic, to determine the effect of increasing population densities of purple nutsedge (Cyperus rotundus) on the yield of eggplant (Solanum melongena). Purple nutsedge populations were established by transplanting viable tubers on 1-m-wide soil beds previously fumigated to suppress volunteer weeds. Nutsedge densities were 0, 50, 100, 150, and 200 plants (tubers) per m2. `Jira' eggplants and purple nutsedge were transplanted the same day and were allowed to interfere season-long. Purple nutsedge initial population densities of up to 100 plants per m2 did not significantly affect the fruit yield of `Jira' eggplants. However, nutsedge densities between 100 and 200 plants per m2 had a significant impact on eggplant yield, causing a linear decline in fruit yield as purple nutsedge density increased. Eggplant fruit yield loss was 22.3% at the density of 200 nutsedge plants per m2.


HortScience ◽  
2005 ◽  
Vol 40 (3) ◽  
pp. 889b-889
Author(s):  
Bielinski M. Santos ◽  
James P. Gilreath ◽  
Camille Esmel ◽  
Myriam N. Siham

Field trials were conducted in Bradenton, Fla., to determine the effect of purple and yellow nutsedge (Cyperus rotundus and C. esculentum) time of emergence on the area of influence of each weed on bell pepper (Capsicum annuum). Each weed-bell pepper complex was studied separately. A single weed was transplanted 1, 2, 3, 4, and 5 weeks after bell pepper transplanting (WAT) and bell pepper yield was collected at 0, 30, 60, and 90 cm from each weed. Bell pepper yield data indicated that yellow nutsedge was more aggressive than purple nutsedge interfering with bell pepper. When yellow nutsedge emerged 1 WAT, bell pepper yield losses were between 32 and 57% for plants at 0 and 30 cm away from the weed, respectively, which represents at least a density of approximately 3.5 plants/m2. For purple nutsedge, one weed growing since 1 WAT between two bell pepper plants (0 cm; 10 plants/m2) produced a yield reduction of 31%. These results indicated that low nutsedge densities, which are commonly believed to be unimportant, can cause significant bell pepper yield reductions.


1999 ◽  
Vol 13 (3) ◽  
pp. 494-503 ◽  
Author(s):  
Leon S. Warren ◽  
Harold D. Coble

Field experiments were conducted in North Carolina from 1994 through 1998 to evaluate the effects of five weed management strategies and four corn (Zeamays)–peanut (Arachis hypogaea) rotation sequences on purple nutsedge (Cyperus rotundus) population development. Effects of these weed management programs on cotton (Gossypium hirsutum) and peanut production in following years were also investigated. Herbicide programs included a nontreated control, a carbamothioate preplant incorporated (PPI) combination treatment utilizing vernolate in peanut and butylate in corn, an early postemergence (EPOST) acetolactate synthase (ALS) inhibitor combination treatment utilizing imazapic in peanut and halosulfuron in corn, and EPOST treatments of imazapic and imazethapyr in both peanut and imidazolinone-resistant corn. Crop rotation sequences for the 3 yr included continuous corn (CCC), corn–peanut–corn (CPC), peanut–corn–peanut (PCP), and continuous peanut (PPP). The imazapic and ALS inhibitor combination treatments both provided excellent shoot and tuber control. After 3 yr, imazapic and the ALS inhibitor combination treatment reduced shoot and tuber population densities to less than 10% of the nontreated control. Imazethapyr provided variable but better control than the carbamothioate treatment with tuber densities (measured from 0 to 15 cm soil depth) and shoot densities increasing from 733 to 2,901 tubers/m3of soil and 16 to 43 shoots/m2, respectively, after 3 yr. Tuber densities increased in the nontreated control from 626 to 9,145 tubers/m3of soil and from 962 to 5,466 tubers/m3of soil in the carbamothioate treatment during this same period. Also, shoot densities increased in the nontreated control from 22 to 159 shoots/m2and from 8 to 92 shoots/m2in the carbamothioate treatment. There was a 31% peanut yield reduction from 1994 to 1996 when peanut was continuously planted or rotated to corn for only 1 yr. Herbicide carryover effects were not observed in cotton during 1997.


2004 ◽  
Vol 18 (2) ◽  
pp. 341-345 ◽  
Author(s):  
James P. Gilreath ◽  
Bielinski M. Santos

Field trials were conducted to compare the effect of various soil fumigants along with in-bed pebulate and row-middle metribuzin applications on purple nutsedge control and on tomato and bell pepper growth and yield. Treatments consisted of combinations of soil fumigants, pebulate, and metribuzin. Fumigants levels were (1) untreated control, (2) methyl bromide (MBr) + chloropicrin (Pic) (67 + 33%, respectively), (3) Pic, (4) metham, (5) dazomet, and (6) 1,3-dichloropropene (1,3-D) + Pic (83 + 17%, respectively). Pebulate levels were either applied in-bed or not applied. Row middles were either sprayed with metribuzin or untreated. In both crops, purple nutsedge populations were independently influenced by fumigants and pebulate applications, with the highest number of purple nutsedge plants in the untreated control. The addition of pebulate reduced purple nutsedge populations in all treatments. In tomato trials, the yield was affected by fumigants, with the highest losses (53 and 50% reductions in fruit number and weight) observed in the nonfumigated control. In pepper trials, fruit number and weight were individually influenced by fumigants and metribuzin sprayings. Application of metribuzin to row middles increased yields 10% relative to nontreated plots.


1969 ◽  
Vol 72 (1) ◽  
pp. 127-139
Author(s):  
Adolfo Quiles-Belén ◽  
Antonio Sotomayor-Ríos ◽  
Salvio Torres-Cardona

The effect of nitrogen applications and population densities on grain and dry matter yield, leaf area and agronomic traits of three commercial corn hybrids was studied at two locations in Puerto Rico. Treatments included sidedressed N at 0, 60, 120, 180, and 240 kg/ha and three population densities of 20,000, 40,000 and 80,000 plants/ha. For most traits, significant differences were found between locations, hybrids, population densitites and N levels, and there were significant interactions of location X hybrids, location X population densities, hybrids X population densities, location X N, hybrids X N and population density X N. Grain yield increased significantly with N rates. Pest results were obtained with 120 kg N/ha and 40,000 plants/ha. Over-all grain yield was higher in Sabana Grande, a drier southern location. Highest grain yield (8,607 kg/ha) was obtained with Pioneer Brand Hybrid 304C with 40,000 plants/ha and 120 kg N/ha. Highest dry matter yield (9,393 kg/ha) was obtained in Isabela, a more humid northern location, with Pioneer Brand Hybrid 5800 at 40,000 plants/ha and 120 kg N/ha. At both locations over-all leaf area was greatest with application of 120 kg N/ha.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 431E-431
Author(s):  
J.P. Morales-Payan ◽  
W.M. Stall

Nursery experiments were conducted in Santo Domingo, Dominican Republic, to determine the effect of increasing population densities of purple nutsedge (Cyperus rotundus) on the growth of papaya (Carica papaya) transplants. Seeds of `Sunrise Solo', `Red Lady', and `Cartagena Ombligua' were separately sown in plastic 12 × 15-cm containers filled with a 1:1 mixture of sand and loamy soil. Viable purple nutsedge tubers were planted 5 cm apart from the papaya seeds. The purple nutsedge initial population densities were 0, 1, 2, 4, and 6 tubers per container. The crop and the weed were sown the same day and allowed to interfere during 6 weeks. Purple nutsedge density had a significant effect on the height, leaf area, and shoot dry weight of the three papaya cultivars. There was no significant difference in the response of the three papaya cultivars to purple nutsedge densities. In general, as purple nutsedge density increased, papaya growth decreased. Nutsedge interference caused papaya shoot dry weight losses of 15% at the density of one plant per container and 73% at six plants per container.


1994 ◽  
Vol 8 (1) ◽  
pp. 28-31 ◽  
Author(s):  
Charles T. Bryson ◽  
James E. Hanks ◽  
Gene D. Wills

Field experiments conducted over three years at Stoneville, MS evaluated invert emulsion and oil diluents on the efficiacy of glyphosate and MSMA on purple nutsedge. The herbicides were applied at 0.6 and 1.1 kg ai/ha in an invert emulsion (oil-in-water) and a paraffinic oil at 19 L/ha (low-volume) and in water with a non-ionic surfactant (0.25% v/v) at 187 L/ha (high-volume). Purple nutsedge control with both herbicides was greater with the low-volume, invert emulsion and oil diluent applications than with high-volume, water diluent applications. Glyphosate and MSMA at 1.1 kg/ha in the oil diluent controlled purple nutsedge at least 88% when compared with the invert emulsion (≥ 75 and ≥ 76%, respectively) and water (≥ 42 and ≥ 44%, respectively) diluents. Cotton injury and seed cotton yields were unaffected by any treatment with MSMA but glyphosate with each diluent caused unacceptable cotton injury and seed cotton yield reduction.


Sign in / Sign up

Export Citation Format

Share Document