The electroretinogram of the rhodopsin knockout mouse

1999 ◽  
Vol 16 (2) ◽  
pp. 391-398 ◽  
Author(s):  
KAZUSHIGE TODA ◽  
RONALD A. BUSH ◽  
PETER HUMPHRIES ◽  
PAUL A. SIEVING

The electroretinogram (ERG) of the rhodopsin knockout (rho−/−) mouse of Humphries et al. (1997) (Humphries et al., 1997) was studied for evidence of light-evoked rod activity and to describe the cone function. The rho−/− retina develops normal numbers of rod and cone nuclei, but the rods have no outer segments, and no rhodopsin is found by immunohistochemistry. The dark-adapted ERG threshold was elevated 4.7 log units above wild-type (WT) control mice, indicating that any residual rod responses were reduced >50,000-fold, consistent with a complete functional knockout. The dark-adapted rho−/− ERG had a cone waveform, and the spectral sensitivity peaked near 510 nm for both dark-adapted and light-adapted conditions, without evidence of a Purkinje shift. The light-adapted ERG b-wave amplitude of young rho−/− mice was the same as WT. The amplitude remained steady up to postnatal day P47, but thereafter it declined to only 1–2% by P80 when no cone outer segments remained. Cone b-wave threshold of dark-adapted rho−/− mice was −1.07 ± 0.39 log cd-s/m2 (n = 17), which is 1.27 log units more sensitive than light-adapted thresholds against a rod-suppressing Ganzfeld background of 1.61 log scotopic cd/m2. This indicates that dark-adapted WT responses to still dimmer stimuli are exclusively rod driven with minimal cone intrusion. Above this cone threshold intensity, the dark-adapted b-wave of WT will be a summation of rod and cone responses. Threshold versus intensity (TVI) studies gave no evidence of a rod influence on the mouse cone b-wave.

Author(s):  
Naoki Ishii ◽  
Takujiro Homma ◽  
Jaeyong Lee ◽  
Hikaru Mitsuhashi ◽  
Ken-ichi Yamada ◽  
...  

Abstract Superoxide dismutase 1 suppresses oxidative stress within cells by decreasing the levels of superoxide anions. A dysfunction of the ovary and/or an aberrant production of sex hormones are suspected causes for infertility in superoxide dismutase 1-knockout mice. We report on attempts to rescue the infertility in female knockout mice by providing two antioxidants, ascorbic acid and/or coenzyme Q10, as supplements in the drinking water of the knockout mice after weaning and on an investigation of their reproductive ability. On the first parturition, 80% of the untreated knockout mice produced smaller litter sizes compared with wild-type mice (average 2.8 vs 7.3 pups/mouse), and supplementing with these antioxidants failed to improve these litter sizes. However, in the second parturition of the knockout mice, the parturition rate was increased from 18% to 44–75% as the result of the administration of antioxidants. While plasma levels of progesterone at 7.5 days of pregnancy were essentially the same between the wild-type and knockout mice and were not changed by the supplementation of these antioxidants, sizes of corpus luteum cells, which were smaller in the knockout mouse ovaries after the first parturition, were significantly ameliorated in the knockout mouse with the administration of the antioxidants. Moreover, the impaired vasculogenesis in uterus/placenta was also improved by ascorbic acid supplementation. We thus conclude that ascorbic acid and/or coenzyme Q10 are involved in maintaining ovarian and uterus/placenta homeostasis against insults that are augmented during pregnancy and that their use might have positive effects in terms of improving female fertility.


Blood ◽  
1997 ◽  
Vol 90 (6) ◽  
pp. 2148-2159 ◽  
Author(s):  
Harshal H. Nandurkar ◽  
Lorraine Robb ◽  
David Tarlinton ◽  
Louise Barnett ◽  
Frank Köntgen ◽  
...  

Abstract Interleukin-11 (IL-11) is a pleiotropic growth factor with a prominent effect on megakaryopoiesis and thrombopoiesis. The receptor for IL-11 is a heterodimer of the signal transduction unit gp130 and a specific receptor component, the α-chain (IL-11Rα). Two genes potentially encode the IL-11Rα: the IL11Ra and IL11Ra2 genes. The IL11Ra gene is widely expressed in hematopoietic and other organs, whereas the IL11Ra2 gene is restricted to only some strains of mice and its expression is confined to testis, lymph node, and thymus. To investigate the essential actions mediated by the IL-11Rα, we have generated mice with a null mutation of IL11Ra (IL11Ra−/−) by gene targeting. Analysis of IL11Ra expression by Northern blot and reverse transcriptase-polymerase chain reaction, as well as the absence of response of IL11Ra−/− bone marrow cells to IL-11 in hematopoietic assays, further confirmed the null mutation. Compensatory expression of the IL11Ra2 in bone marrow cells was not detected. IL11Ra−/− mice were healthy with normal numbers of peripheral blood white blood cells, hematocrit, and platelets. Bone marrow and spleen contained normal numbers of cells of all hematopoietic lineages, including megakaryocytes. Clonal cultures did not identify any perturbation of granulocyte-macrophage (GM), erythroid, or megakaryocyte progenitors. The number of day-12 colony-forming unit-spleen progenitors were similar in wild-type and IL11Ra−/− mice. The kinetics of recovery of peripheral blood white blood cells, platelets, and bone marrow GM progenitors after treatment with 5-flurouracil were the same in IL11Ra−/− and wild-type mice. Acute hemolytic stress was induced by phenylhydrazine and resulted in a 50% decrease in hematocrit. The recovery of hematocrit was comparable in IL11Ra−/− and wild-type mice. These observations indicate that IL-11 receptor signalling is dispensable for adult hematopoiesis.


2009 ◽  
Vol 296 (4) ◽  
pp. H1133-H1140 ◽  
Author(s):  
James L. Park ◽  
Liming Shu ◽  
James A. Shayman

The lysosomal storage disorder Fabry disease is characterized by excessive globotriaosylceramide (Gb3) accumulation in major organs such as the heart and kidney. Defective lysosomal α-galactosidase A (Gla) is responsible for excessive Gb3 accumulation, and one cell sensitive to the effects of Gb3 accumulation is vascular endothelium. Endothelial dysfunction is associated with Fabry disease and excessive cellular Gb3. We previously demonstrated that excessive vascular Gb3 in a mouse model of Fabry disease, the Gla-knockout ( Gla−/0) mouse, results in abnormal vascular function, which includes abnormal endothelium-dependent contractions, a vascular phenomenon known to involve cyclooxygenase (COX). Therefore, we hypothesized that the vasculopathy in the Gla knockout mouse may be due to a vasoactive COX-derived product. To test this hypothesis, vascular reactivity experiments were performed in aortic rings from wild-type ( Gla+/0) and Gla−/0 mice in the presence and absence of specific and nonspecific COX inhibitors. Specific inhibition of COX1 or COX2 in endothelium-intact rings from Gla−/0 mice decreased overall phenylephrine contractility compared with untreated Gla−/0 rings, whereas COX inhibitors had no effect on contractility in endothelium-denuded rings. Nonspecific inhibition of COX with indomethacin (10 μmol/l) or COX1 inhibition with valeryl salicylate (3 mmol/l) improved endothelial function in rings from Gla−/0 mice, but COX2 inhibition with NS-398 (1 μmol/l) further increased endothelial dysfunction in rings from Gla−/0 mice. These results suggest that, in the Gla−/0 mice, COX1 and COX2 activity are increased and localized in the endothelium, producing vasopressor and vasorelaxant products, which contribute to the Fabry-related vasculopathy.


2005 ◽  
Vol 46 (1) ◽  
pp. 398 ◽  
Author(s):  
Christine Schmucker ◽  
Mathias Seeliger ◽  
Pete Humphries ◽  
Martin Biel ◽  
Frank Schaeffel

2001 ◽  
Vol 194 (10) ◽  
pp. 1473-1483 ◽  
Author(s):  
Isabel Ferrero ◽  
Anne Wilson ◽  
Friedrich Beermann ◽  
Werner Held ◽  
H. Robson MacDonald

A particular feature of γδ T cell biology is that cells expressing T cell receptor (TCR) using specific Vγ/Vδ segments are localized in distinct epithelial sites, e.g., in mouse epidermis nearly all γδ T cells express Vγ3/Vδ1. These cells, referred to as dendritic epidermal T cells (DETC) originate from fetal Vγ3+ thymocytes. The role of γδ TCR specificity in DETC's migration/localization to the skin has remained controversial. To address this issue we have generated transgenic (Tg) mice expressing a TCR δ chain (Vδ6.3-Dδ1-Dδ2-Jδ1-Cδ), which can pair with Vγ3 in fetal thymocytes but is not normally expressed by DETC. In wild-type (wt) Vδ6.3Tg mice DETC were present and virtually all of them express Vδ6.3. However, DETC were absent in TCR-δ−/− Vδ6.3Tg mice, despite the fact that Vδ6.3Tg γδ T cells were present in normal numbers in other lymphoid and nonlymphoid tissues. In wt Vδ6.3Tg mice, a high proportion of in-frame Vδ1 transcripts were found in DETC, suggesting that the expression of an endogenous TCR-δ (most probably Vδ1) was required for the development of Vδ6.3+ epidermal γδ T cells. Collectively our data demonstrate that TCR specificity is essential for the development of γδ T cells in the epidermis. Moreover, they show that the TCR-δ locus is not allelically excluded.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2447-2447 ◽  
Author(s):  
Jing Zhang ◽  
Li Li ◽  
Alan D. Friedman ◽  
Donald Small ◽  
Ido Paz-Priel

Abstract Abstract 2447 Internal tandem duplication (ITD) of the fms-like tyrosine kinase 3 (FLT3) receptor is common in acute myeloid leukemia (AML) and is associated with a dismal outcome. Despite initial response, FLT3/ITD AMLs often relapse early, suggesting a residual population of resistant leukemia stem cells (LSC). Clinically, FLT3 inhibitors asmonotherapy have yet to improve outcome significantly and therefore, targeting additional pro-survival pathways may be necessary for this group of AML patients. Mice genetically egineered to express a hemizygous FLT3/ITD mutation develop a progressive, fatal, myeloproliferative neoplasm. Lin−cells isolated from the bone marrow of FLT3/ITD or control mice were subjected to gel shift analysis using a radio-labeled NF-kB binding site. This analysis demonstrated high levels of nuclear activation of NF-kB in the FLT3/ITD-expressing cells, suggesting its activation downstream of mutant FLT3 signaling. MV4–11 is a human AML-derived cell line harboring a homozygous FLT3/ITD mutation. Cells expressing high levels of aldehyde dehydrogenase (ALDH) have been shown to be enriched for LSC in primary AML samples and cell lines. High ALDH expressing MV4–11 cells were isolated using FACS and analyzed for NF-kB activation. Western blot analysis demonstrated preferential phosphorylation of NF-kB p65 by activated IKK on Ser536 in this subpopulation, compared with cells with low ALDH activity. These findings indicate activation of NF-kB in MV4–11 LSCs. We wanted to next test the requirement for NF-kB signaling in transformation by FLT3/ITD mutations. NF-kB p65 null mice die in utero. We therefore established C57BL/6 p65(flox/flox);Mx1-Cre mice. Intra-peritoneal injection of pIpC every other day for 7 doses efficiently deletes the RelA/p65 gene, resulting in expression of <1% of the corresponding RNA or protein. Despite effective excision of p65, the mice survive. Bone marrow cells harvested from control or p65(del/del) mice were transduced with a FLT3/ITD-expressing lentivirus and seeded in methylcellulose without cytokines. Equal transduction rate was verified by measurement of GFP expression by flow cytometry. Reproducibly, p65(del/del) marrow transduced with FLT3/ITD was ineffective in forming cytokine independent colonies, in contrast to wild-type marrow (5 +/− 0.6 vs. 55 +/− 6 colonies per 1E5 cells, P<0.001), and the few p65(del/del) colonies that resulted were smaller than those from p65 expressing wild-type marrow cells. Cells transduced with a lentiviral vector expressing GFP but not FLT3/ITD did not form colonies without cytokines, and p65(del/del) marrow formed normal numbers of colonies of normal size and distribution in the presence of IL-3, IL-6, and SCF. Sorafenib inhibits FLT3 signaling and kills MV4–11 cells with an IC50 of approximately 10 nM. Reproducibly, a sub-toxic dose of sorafenib (5 nM) combined with sub-toxic levels of the IKKb inhibitor IMD-0354 (400 nM) resulted in synergistic cell killing as indicated by the calculated combination index of 0.55. Currently, clinical efforts in FLT3/ITD leukemia concentrate on FLT3 inhibition alone. Our data suggest that canonical NF-kB may be an important pathway in FLT3/ITD AML and that simultaneously targeting FLT3 and NF-kB in this disease may be an effective approach. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 168 (3) ◽  
pp. 477-488 ◽  
Author(s):  
Eva-Maria Damm ◽  
Lucas Pelkmans ◽  
Jürgen Kartenbeck ◽  
Anna Mezzacasa ◽  
Teymuras Kurzchalia ◽  
...  

Simian Virus 40 (SV40) has been shown to enter host cells by caveolar endocytosis followed by transport via caveosomes to the endoplasmic reticulum (ER). Using a caveolin-1 (cav-1)–deficient cell line (human hepatoma 7) and embryonic fibroblasts from a cav-1 knockout mouse, we found that in the absence of caveolae, but also in wild-type embryonic fibroblasts, the virus exploits an alternative, cav-1–independent pathway. Internalization was rapid (t1/2 = 20 min) and cholesterol and tyrosine kinase dependent but independent of clathrin, dynamin II, and ARF6. The viruses were internalized in small, tight-fitting vesicles and transported to membrane-bounded, pH-neutral organelles similar to caveosomes but devoid of cav-1 and -2. The viruses were next transferred by microtubule-dependent vesicular transport to the ER, a step that was required for infectivity. Our results revealed the existence of a virus-activated endocytic pathway from the plasma membrane to the ER that involves neither clathrin nor caveolae and that can be activated also in the presence of cav-1.


2019 ◽  
Author(s):  
Natalia Sánchez ◽  
Montserrat Olivares-Costa ◽  
Marcela P González ◽  
Angélica P Escobar ◽  
Rodrigo Meza ◽  
...  

AbstractNull mice for the dopamine D2 receptor (D2R) have been instrumental in understanding the function of this protein in the central nervous system. Several lines of D2R knockout mice have been generated, which share some characteristics but differ in others. The D2R functional knockout mouse, first described in 1997, is functionally null for D2R-mediated signaling but the Drd2 gene was interrupted at the most extreme distal end leaving open the question about whether transcript and protein are produced. We decided to determine if there are D2R transcripts, the characteristics of these transcripts and whether they are translated in the brain of D2R functional knockout mice. Sequence analysis of 3’ Rapid Amplification of cDNA Ends showed that D2R functional knockout mice express transcripts that lack only the exon eight. Immunofluorescence showed D2R-like protein in the brain of the knockout mice. As previously reported, D2R functional knockout mice are hypoactive and insensitive to the D2R agonist quinpirole (QNP). However, the heterozygous showed locomotor activity and response to QNP similar to the wild-type mice. Intriguingly, microdialysis experiments showed that heterozygous mice, such as knockouts, have half the normal levels of synaptic dopamine in the striatum. However, heterozygous mice responded similarly to wild-type mice to an acute injection of QNP, showing a 50% decrease in synaptic dopamine. In conclusion, D2R functional knockout mice express transcripts that lead to a truncated D2R protein that lacks from the sixth transmembrane domain to the C-terminal end but retains the third intracellular loop. We discuss the implications of this truncated D2R coexisting with the native D2R that may explain the unexpected outcomes observed in the heterozygous. Finally, we suggest that the D2R functional knockout mouse can be a useful model for studying protein-protein interaction and trafficking of D2R.


Sign in / Sign up

Export Citation Format

Share Document