Adaptive evolution of the heat-shock response in the Antarctic psychrophilic ciliate, Euplotes focardii: hints from a comparative determination of the hsp70 gene structure

2007 ◽  
Vol 19 (2) ◽  
pp. 239-244 ◽  
Author(s):  
Antonietta La Terza ◽  
Valerio Passini ◽  
Sabrina Barchetta ◽  
Pierangelo Luporini

AbstractThe Antarctic psychrophilic ciliate Euplotes focardii manifests a dramatic reduction in the activation of its hsp70 gene in response to a heat-shock, while oxidative and chemical stresses activate the transcription of this gene to appreciable extents. To investigate the genetic causes of this eccentric behaviour of E. focardii in the hsp70 gene transcription activation, we carried out a comparative structural analysis of this gene between E. focardii and another Antarctic Euplotes, E. nobilii, which manifests a psychrotrophic behaviour and an inducible thermal response. No substantial difference was detected in the organization of the hsp70 5' promoter region, both species bearing canonical regulatory cis-acting elements deputed to bind transcriptional trans-activating factors. Adenine-rich elements favouring mRNA degradation were instead detected in the hsp70 3' regulatory region of E. nobilii, but not in that of E. focardii. These observations lend further support to the hypothesis that the causes of the Euplotes focardii unresponsiveness to thermal stress resides in some structural, or functional modifications of transcriptional trans-activating factors.

2021 ◽  
Author(s):  
◽  
Sonja Hempel

<p>Marine life is currently under threat from large-scale, long-term changes to the marine environment. Anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO₂), are causing ongoing change to global marine systems, particularly through ocean warming and acidification. Greenhouse gases in the atmosphere are trapping radiation and heating the entire Earth surface, including the ocean. At the same time, oceanic uptake of CO₂ through absorption by surface waters is altering ocean chemistry, increasing acidity, reducing availability of carbonate ions (CO₃²⁻), and causing increasing dissolution of calcium carbonate (CaCO₃) structures.  Because atmospheric CO₂ diffuses more readily into cold water, the Southern Ocean (SO) will experience ocean acidification in a matter of decades. Warming in the SO is also occurring rapidly and represents a comparatively greater increase in temperature than elsewhere. SO marine fauna have evolved in constant, stable, cold conditions, and as a result are stenothermal and particularly at risk from ocean warming and acidification. The large infaunal bivalve Laternula elliptica is a prevalent keystone species found throughout the Antarctic benthos in high numbers, and contributes significantly to biodeposition and bentho-pelagic coupling.  This thesis examines how L. elliptica adults are affected over medium-term (5-mo) timescales by SO warming and acidification. Adult L. elliptica collected from Cape Evans in McMurdo Sound, Antarctica, were subjected to combinations of temperatures and pHs predicted for the SO by 2050 and 2100 (Temperatures: -1.4°C (control); -0.5°C; +0.5°C. pHs: pH 8.00 (control); pH 7.85; pH 7.65). L. elliptica were assessed at 5 wk and 5 mo to determine their cellular, metabolic, and whole-organism responses to temperature increase and/or pH decrease. Survival parameters such as final survival percentage, survival curves, and time to 50% survival (LD₅₀) were compared among treatments. L. elliptica survival was severely reduced by warming of only 1-2°C above summer ambient temperatures. Physical and physiological condition indices were calculated to assess health, and show changes in shell and body tissue mass. Physical condition stayed similar amongst all treatments at both time points, while physiological condition decreased significantly at 5 mo with elevated temperature. Oxygen (O₂) consumption was measured as a proxy for standard metabolic rate to show whether animals had acclimatised to conditions. O₂ consumption was significantly negatively correlated with physiological condition, and increased, becoming more variable, with both elevated temperature and lowered pH. This indicated that L. elliptica experienced increased metabolic demand in response to these conditions, and there was a general lack of acclimation to these conditions over time. Overall, pH had no significant effect on survival, metabolic rate, or condition. Heat shock protein 70 (HSP70) gene expression levels were measured to provide a preliminary indication of how the heat shock response of L. elliptica responds to both elevated temperature and reduced pH. Lowered pH appeared to stimulate an up-regulation of HSP70 gene expression at both time points, although this was smaller at 5 mo. L. elliptica did not seem to display a heat shock response at environmentally realistic levels of warming.  Overall, warming resulted in lowered survival and condition loss with no sign of acclimation after 5 mo. These responses occurred at smaller degrees of warming than are typically considered lethal for L. elliptica, indicating that successful longer-term maintenance is more thermally limited than short-term survival in this species. While physical (shell) condition was maintained in undersaturated conditions under both elevated temperature and reduced pH, this maintenance occurred alongside increased O₂ demand. Maintaining the aragonitic shell in combination with increased metabolic activity may have contributed to the decline in physiological (body mass) condition observed in L. elliptica. In combination, the results of this experiment indicate that warming of the SO may be more important than ocean acidification to the survival and functioning of adult L. elliptica.</p>


2021 ◽  
Author(s):  
◽  
Sonja Hempel

<p>Marine life is currently under threat from large-scale, long-term changes to the marine environment. Anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO₂), are causing ongoing change to global marine systems, particularly through ocean warming and acidification. Greenhouse gases in the atmosphere are trapping radiation and heating the entire Earth surface, including the ocean. At the same time, oceanic uptake of CO₂ through absorption by surface waters is altering ocean chemistry, increasing acidity, reducing availability of carbonate ions (CO₃²⁻), and causing increasing dissolution of calcium carbonate (CaCO₃) structures.  Because atmospheric CO₂ diffuses more readily into cold water, the Southern Ocean (SO) will experience ocean acidification in a matter of decades. Warming in the SO is also occurring rapidly and represents a comparatively greater increase in temperature than elsewhere. SO marine fauna have evolved in constant, stable, cold conditions, and as a result are stenothermal and particularly at risk from ocean warming and acidification. The large infaunal bivalve Laternula elliptica is a prevalent keystone species found throughout the Antarctic benthos in high numbers, and contributes significantly to biodeposition and bentho-pelagic coupling.  This thesis examines how L. elliptica adults are affected over medium-term (5-mo) timescales by SO warming and acidification. Adult L. elliptica collected from Cape Evans in McMurdo Sound, Antarctica, were subjected to combinations of temperatures and pHs predicted for the SO by 2050 and 2100 (Temperatures: -1.4°C (control); -0.5°C; +0.5°C. pHs: pH 8.00 (control); pH 7.85; pH 7.65). L. elliptica were assessed at 5 wk and 5 mo to determine their cellular, metabolic, and whole-organism responses to temperature increase and/or pH decrease. Survival parameters such as final survival percentage, survival curves, and time to 50% survival (LD₅₀) were compared among treatments. L. elliptica survival was severely reduced by warming of only 1-2°C above summer ambient temperatures. Physical and physiological condition indices were calculated to assess health, and show changes in shell and body tissue mass. Physical condition stayed similar amongst all treatments at both time points, while physiological condition decreased significantly at 5 mo with elevated temperature. Oxygen (O₂) consumption was measured as a proxy for standard metabolic rate to show whether animals had acclimatised to conditions. O₂ consumption was significantly negatively correlated with physiological condition, and increased, becoming more variable, with both elevated temperature and lowered pH. This indicated that L. elliptica experienced increased metabolic demand in response to these conditions, and there was a general lack of acclimation to these conditions over time. Overall, pH had no significant effect on survival, metabolic rate, or condition. Heat shock protein 70 (HSP70) gene expression levels were measured to provide a preliminary indication of how the heat shock response of L. elliptica responds to both elevated temperature and reduced pH. Lowered pH appeared to stimulate an up-regulation of HSP70 gene expression at both time points, although this was smaller at 5 mo. L. elliptica did not seem to display a heat shock response at environmentally realistic levels of warming.  Overall, warming resulted in lowered survival and condition loss with no sign of acclimation after 5 mo. These responses occurred at smaller degrees of warming than are typically considered lethal for L. elliptica, indicating that successful longer-term maintenance is more thermally limited than short-term survival in this species. While physical (shell) condition was maintained in undersaturated conditions under both elevated temperature and reduced pH, this maintenance occurred alongside increased O₂ demand. Maintaining the aragonitic shell in combination with increased metabolic activity may have contributed to the decline in physiological (body mass) condition observed in L. elliptica. In combination, the results of this experiment indicate that warming of the SO may be more important than ocean acidification to the survival and functioning of adult L. elliptica.</p>


Polar Biology ◽  
2007 ◽  
Vol 31 (2) ◽  
pp. 171-180 ◽  
Author(s):  
Melody S. Clark ◽  
Keiron P. P. Fraser ◽  
Gavin Burns ◽  
Lloyd S. Peck

2004 ◽  
Vol 16 (1) ◽  
pp. 23-28 ◽  
Author(s):  
ANTONIETTA LA TERZA ◽  
CRISTINA MICELI ◽  
PIERANGELO LUPORINI

In the Antarctic ciliate, Euplotes focardii, the heat-shock protein 70 (Hsp70) gene does not show any appreciable activation by a thermal stress. Yet, it is activated to appreciable transcriptional levels by oxidative and chemical stresses, thus implying that it evolved a mechanism of selective, stress-specific response. A basic step in investigating this mechanism is the determination of the complete nucleotide sequence of the E. focardii Hsp70 gene. This gene contains a coding region specific for an Hsp70 protein that carries unique amino acid substitutions of potential significance for cold adaptation, and a 5' regulatory region that includes sequence motifs denoting two distinct types of stress-inducible promoters, known as “Heat Shock Elements” (HSE) and “Stress Response Elements” (StRE). From the study of the interactions of these regulatory elements with their specific transactivator factors we expect to shed light on the adaptive modifications that prevent the Hsp70 gene of E. focardii from responding to thermal stress while being responsive to other stresses.


2010 ◽  
Vol 22 (1) ◽  
pp. 281
Author(s):  
C. Rosenkrans Jr ◽  
A. Banks ◽  
S. Reiter ◽  
L. Starkey ◽  
M. Looper

Stress proteins and their genetic polymorphisms have been associated with decreased male and female fertility. Our objectives were to 1) identify single nucleotide polymorphisms (SNP) located in the promoter region of the bovine heat shock protein 70 (Hsp70) gene and 2) evaluate associations between Hsp70 SNP and calving rates of multiparous Brahman-influenced cows (n = 99). Genomic DNA was extracted from the buffy coats of EDTA- treated whole blood. Primers HSP-Pro749F (GCCAGGAAACCAGAGACAGA) and HSP-Pro1268R (CCTACGCAGGAGTAGGTGGT) were used for PCR amplification of a 539-base segment of the bovine Hsp70 promoter (GenBank accession number M98823). Eleven single nucleotide polymorphisms were detected: 8 transitions (G1013A, n = 2; G1045A, n = 8; C1069T, n = 4; A1096G, n = 14; G1117A, n = 12; T1134C, n = 7; C1154G, n = 11; andT1204C, n = 56), 2 transversions (A1125C, n = 53; and G1128T, n = 51), and 1 deletion at base position 895 (n = 37). Within an SNP, calving percentages were compared by chi-square analysis. Concentrations of Hsp70 and Julian date were analyzed by ANOVA, with each SNP represented as the main effect in the model. Cows that were homozygous for the minor allele at both transversion (A1125C and G1128T) sites had lower (P < 0.05) calving rates when compared with cows that were homozygous for the primary allele (48 v. 75%). Homozygous and heterozygous deletion of cytosine at base 895 resulted in lower (P < 0.05) calving percentages than homozygous cytosine cows (8, 50, 82%; respectively). In addition, DD cows had the latest (P < 0.05) Julian calving date. Eighteen Hsp70 promoter haplotypes were deduced, and 7 of those haplotypes (n = 37) included the deletion at base 895. Thirty-two cows had the haplotype consistent with the sequence deposited at GenBank, and the remaining 30 cows had an SNP other than the deletion. Cows with the deletion haplotypes had greater (P < 0.05) serum Hsp70 concentrations and lower (P < 0.05) calving rates (5.1, 4.7, and 3.5 MSE 0.5 ng mL-1; and 35, 78, and 87%; respectively, for Deletion, No, and Yes). Furthermore, cows with the deletion haplotypes had the latest (P < 0.05) Julian calving date (85, 77, and 73 d, respectively, for Deletion, No, and Yes). Our results suggest that the promoter region of the bovine Hsp70 gene is polymorphic and might be useful in selecting cows with greater fertility.


2004 ◽  
Vol 287 (2) ◽  
pp. R429-R436 ◽  
Author(s):  
Sean P. Place ◽  
Mackenzie L. Zippay ◽  
Gretchen E. Hofmann

Previous research on the Antarctic notothenioid fish Trematomus bernacchii demonstrated the loss of the heat shock response (HSR), a classical cellular defense mechanism against thermal stress, characterized by the rapid synthesis of heat shock proteins (Hsps). In the current study, we examined potential mechanisms for the apparent loss of the HSR in Antarctic notothenioids and, in addition, compared expression patterns of two genes from the 70-kDa Hsp family ( hsc71 and hsp70) in tissues from T. bernacchii to expression patterns in tissues of two closely related temperate notothenioid fishes from New Zealand, Bovichtus variegatus and Notothenia angustata. The results showed that transcript for both the constitutive and inducible genes in the Hsp70 gene family were expressed in detectable levels in all three species. However, only the cold-temperate New Zealand fishes displayed the ability to upregulate the inducible transcript, hsp70. Although hsp70 was present in detectable levels in several tissues of the Antarctic notothen T. bernacchii, in vitro thermal stresses failed to produce a significant increase in mRNA levels. In all species, the expression of the constitutive transcript hsc71 was variable and nonresponsive to temperature increases, even at temperatures as high as 10°C above the ecologically relevant range for the species under study. Field-collected tissues from T. bernacchii (sampled immediately after capture) indicated that hsp70 mRNA was expressed at high levels in field-acclimatized fishes. Thus upregulation of molecular chaperones suggested that low-temperature stress may be significantly denaturing to cellular proteins in Antarctic fish, an observation that was supported by elevated levels of ubiquitin-conjugated protein.


1986 ◽  
Vol 6 (11) ◽  
pp. 3984-3989 ◽  
Author(s):  
D S Gilmour ◽  
J T Lis

By using a protein-DNA cross-linking method (D. S. Gilmour and J. T. Lis, Mol. Cell. Biol. 5:2009-2018, 1985), we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation.


2021 ◽  
Author(s):  
Kasahun Amare ◽  
Mulugeta Kebede

Heat shock proteins (HSP70) play an important role in many biological processes. However, as typical in Sorghum bicolor, the systematic identification of the HSP70 gene is very limited, and the role of the Hsp70 gene in the evolution of Sorghum bicolor has not been described systematically a lot. To overcome the gap, Insilco analysis of HSP70 gene family was conducted.The investigation was utilizing the bioinformatics method to analyze the HSP70 gene family and it has been identified that 30 HSP70 genes from the genome sequence of Sorghum bicolor. A comprehensive analysis of these 30 identified genes undertaking the analysis of gene structure, phylogeny, and physicochemical properties, subcellular localization, and promoter region analysis. The gene structure visualization analyses revealed that 22 genes contains both 5’ and 3’ UTRS and one 5’ and one 3’ gene and 6 genes without UTR. The highest number of introns was recorded as 12 and those genes have shown that without in any intron. In the promoter region analysis, ten protein motifs are identified and characterized and 2219 cis-acting elements are identified. Among those, the promoter enhancer elements share the highest number (1411) and light-responsive elements share the next value (335). The physicochemical properties analysis revealed that 23 families have an acidic nature while four families are basic and the rests are neutral. In general, the different analyses performed disclosed their structural organization, subcellular localization, physicochemical properties, cis-acting elements, phylogenetic, and understress conditions. This study provides further information for the functional characterization of HSP70 and helps to understand the mechanisms of abiotic stress tolerance under diverse stress conditions in Sorghum bicolor.


2007 ◽  
Vol 190 (5) ◽  
pp. 1561-1567 ◽  
Author(s):  
Chi-Ling Tseng ◽  
Gwo-Chyuan Shaw

ABSTRACT The Bacillus subtilis sigI gene, which is a member of the class VI heat shock genes of the B. subtilis heat shock stimulon, encodes an alternative sigma factor whose regulon is poorly defined. In this study, by using a binary vector system, we showed that B. subtilis SigI could drive expression of a transcriptional fusion between the sigI regulatory region from Bacillus licheniformis, Bacillus sp. strain NRRL B-14911, B. subtilis, or Bacillus thuringiensis and the xylE reporter gene in B. subtilis. The transcriptional initiation sites of these fusions in B. subtilis were mapped by primer extension analyses. A putative consensus promoter sequence probably recognized by the B. subtilis SigI was thus deduced. Using a consensus sequence-based search procedure, we found putative σI promoters preceding the actin homolog gene mreBH and the bacitracin resistance gene bcrC of B. subtilis. Overexpression of the B. subtilis sigI gene could specifically stimulate expression of both an mreBH promoter region-bgaB fusion and a bcrC promoter region-bgaB fusion. Expression of these two fusions at the amyE locus of the B. subtilis chromosome was heat inducible and SigI dependent as revealed by sigI gene disruption experiments. Primer extension analysis showed that the identified mreBH and bcrC transcriptional start sites were at appropriate distances from their σI promoter elements. This further supports the notion that SigI can directly regulate mreBH and bcrC expression. Taken together, these results strongly suggest that mreBH and bcrC are new members of the SigI regulon.


1986 ◽  
Vol 6 (11) ◽  
pp. 3984-3989
Author(s):  
D S Gilmour ◽  
J T Lis

By using a protein-DNA cross-linking method (D. S. Gilmour and J. T. Lis, Mol. Cell. Biol. 5:2009-2018, 1985), we examined the in vivo distribution of RNA polymerase II on the hsp70 heat shock gene in Drosophila melanogaster Schneider line 2 cells. In heat shock-induced cells, a high level of RNA polymerase II was detected on the entire gene, while in noninduced cells, the RNA polymerase II was confined to the 5' end of the hsp70 gene, predominantly between nucleotides -12 and +65 relative to the start of transcription. This association of RNA polymerase II was apparent whether the cross-linking was performed by a 10-min UV irradiation of chilled cells with mercury vapor lamps or by a 40-microsecond irradiation of cells with a high-energy xenon flash lamp. We hypothesize that RNA polymerase II has access to, and a high affinity for, the promoter region of this gene before induction, and this poised RNA polymerase II may be critical in the mechanism of transcription activation.


Sign in / Sign up

Export Citation Format

Share Document