scholarly journals Science vs the Environment

1997 ◽  
Vol 9 (2) ◽  
pp. 119-119
Author(s):  
Clive Howard-Williams

The Environmental Protocol to the Antarctic Treaty is rapidly approaching ratification, and nations which have now signed it see the Protocol as a signal for considerable future debate, if not scrutiny. Everyone has begun to implement, at least in spirit, many of its requirements which are now beginning to have an effect on science on the continent. This is currently evident in at least four different ways: a reallocation of funding from pure science, to �applied� science relating to human impacts,an increase in funding to allow for studies of human impact and the meeting of Protocol obligations,a reassessment by the science community on what can be done with minimal impact, and an imposition on the science community of rules and codes which will restrict many types of scientific work that have been carried out in the past, and will force modifications of future work. Because all science on the continent (as opposed too remote sensing from space) will have an impact there will have to be tradeoffs between the benefit to science and the impact of doing the work. We can only evaluate impacts on those areas of science that we know about at present. The problem is that there will be future, presently unknown areas of science that may be compromised by operations currently considered �safe�. Who knows, for instance, what viruses we are inadvertently spreading and what the importance of these will be in future studies? At present the effects of these organisms are difficult to measure but studies on the role of viruses in natural ecosystems are increasing as technology expands.

2020 ◽  
Author(s):  
David M. Hannon ◽  
Tim Jones ◽  
Jack Conolly ◽  
Conor Judge ◽  
Talha Iqbal ◽  
...  

AbstractObjectivesTo develop and assess the performance of a system for shared ventilation that uses clinically available components to individualize tidal volumes under a variety of clinically relevant conditions.DesignEvaluation and in vitro validation study.SettingVentilator shortage during the SARS-CoV-2 global pandemic.ParticipantsThe design and validation team consisted of intensive care physicians, bioengineers, computer programmers, and representatives from the medtech sector.MethodsUsing standard clinical components, a system of shared ventilation consisting of two ventilatory limbs was assembled and connected to a single ventilator. Individual monitors for each circuit were developed using widely available equipment and open source software. System performance was determined under 2 sets of conditions. First, the effect of altering ventilator settings (Inspiratory Pressure, Respiratory rate, I:E ratio) on the tidal volumes delivered to each lung circuit was determined. Second, the impact of altering the compliance and resistance in one simulated lung circuit on the tidal volumes delivered to that lung and the second lung circuit was determined. All measurements at each setting were repeated three times to determine the variability in the system.ResultsThe system permitted accurate and reproducible titration of tidal volumes to each ‘lung circuit’ over a wide range of ventilator settings and simulated lung conditions. Alteration of ventilator inspiratory pressures stepwise from 4-20cm H2O, of respiratory rates from 6-20 breaths/minute and I:E ratio from 1:1 to 1:4 resulted in near identical tidal volumes delivered under each set of conditions to each simulated ‘lung’. Stepwise alteration of compliance and resistance in one ‘test’ lung circuit resulted in reproducible alterations in tidal volume to the ‘test’ lung, with little change to tidal volumes in the ‘control’ lung (a change of only 6% is noted). All tidal volumes delivered were highly reproducible upon repetition.ConclusionsWe demonstrate the reliability of a simple shared ventilation system assembled using commonly available clinical components that allows individual titration of tidal volumes. This system may be useful as a temporary strategy of last resort where the numbers of patients requiring invasive mechanical ventilation exceeds supply of ventilators.Article SummaryStrengths and limitations of this studyThis solution provides the ability to safely and robustly ventilate two patients simultaneously while allowing differing tidal volumes in each limb.The designed solution uses equipment readily available in most hospitals.Accurate and reproducible titration of tidal volumes to each ‘lung’ was possible over a wide range of ventilator settings.Alteration of one simulated ‘lung’ conditions had minimal impact on the tidal volumes delivered to the unaffected lungThe system relies on patients being sedated and paralysed.We have not yet tested this solution in vivo, on COVID-19 patients.


Author(s):  
Tareq Mohammed Dhannoon AL Taie

The BRICS countries have a historical aspiration for global leadership, especially Russia and China, and other countries trying to have a position in the pyramid of international powers in the twenty-first century, especially Brazil, India and South Africa, they worked to unify their efforts, in order to achieve integration in the strategic action, activate its role in International affairs, ending American domination , and restructuring an international system that have an active role in its interactions.       The research hypothesis is based on the idea that the BRICS group, despite the nature of its economic composition and its long-term goals, but its political influence as a bloc, is greater than the proportion of its economic influence in restructuring the new international order. The BRICS group has the capabilities to reshape the international order, but disputes among some of its members represent a challenge to its future work. Its goals will not be achieved without teamwork. Third world countries, especially those that reject unipolarism, have regarded one of the pillars supporting multi-polarity, aiming of giving them freedom of movement in international relations. The ultimate goal of the BRICS is a political nature, as economic mechanisms are used to achieve political goals.


Author(s):  
Dinh-Thuan Do ◽  
Minh-Sang V. Nguyen

Objective: In this paper, Decode-and-Forward (DF) mode is deployed in the Relay Selection (RS) scheme to provide better performance in cooperative downlink Non-orthogonal Multiple Access (NOMA) networks. In particular, evaluation regarding the impact of the number of multiple relays on outage performance is presented. Methods: As main parameter affecting cooperative NOMA performance, we consider the scenario of the fixed power allocations and the varying number of relays. In addition, the expressions of outage probabilities are the main metric to examine separated NOMA users. By matching related results between simulation and analytical methods, the exactness of derived formula can be verified. Results: The intuitive main results show that in such cooperative NOMA networks, the higher the number of relays equipped, the better the system performance can be achieved. Conclusion: DF mode is confirmed as a reasonable selection scheme to improve the transmission quality in NOMA. In future work, we will introduce new relay selections to achieve improved performance.


2021 ◽  
Vol 10 (2) ◽  
pp. 34
Author(s):  
Alessio Botta ◽  
Jonathan Cacace ◽  
Riccardo De Vivo ◽  
Bruno Siciliano ◽  
Giorgio Ventre

With the advances in networking technologies, robots can use the almost unlimited resources of large data centers, overcoming the severe limitations imposed by onboard resources: this is the vision of Cloud Robotics. In this context, we present DewROS, a framework based on the Robot Operating System (ROS) which embodies the three-layer, Dew-Robotics architecture, where computation and storage can be distributed among the robot, the network devices close to it, and the Cloud. After presenting the design and implementation of DewROS, we show its application in a real use-case called SHERPA, which foresees a mixed ground and aerial robotic platform for search and rescue in an alpine environment. We used DewROS to analyze the video acquired by the drones in the Cloud and quickly spot signs of human beings in danger. We perform a wide experimental evaluation using different network technologies and Cloud services from Google and Amazon. We evaluated the impact of several variables on the performance of the system. Our results show that, for example, the video length has a minimal impact on the response time with respect to the video size. In addition, we show that the response time depends on the Round Trip Time (RTT) of the network connection when the video is already loaded into the Cloud provider side. Finally, we present a model of the annotation time that considers the RTT of the connection used to reach the Cloud, discussing results and insights into how to improve current Cloud Robotics applications.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1241
Author(s):  
Stanko Vršič ◽  
Marko Breznik ◽  
Borut Pulko ◽  
Jesús Rodrigo-Comino

Earthworms are key indicators of soil quality and health in vineyards, but research that considers different soil management systems, especially in Slovenian viticultural areas is scarce. In this investigation, the impact of different soil management practices such as permanent green cover, the use of herbicides in row and inter-row areas, use of straw mulch, and shallow soil tillage compared to meadow control for earthworm abundance, were assessed. The biomass and abundance of earthworms (m2) and distribution in various soil layers were quantified for three years. Monitoring and a survey covering 22 May 2014 to 5 October 2016 in seven different sampling dates, along with a soil profile at the depth from 0 to 60 cm, were carried out. Our results showed that the lowest mean abundance and biomass of earthworms in all sampling periods were registered along the herbicide strip (within the rows). The highest abundance was found in the straw mulch and permanent green cover treatments (higher than in the control). On the plots where the herbicide was applied to the complete inter-row area, the abundance of the earthworm community decreased from the beginning to the end of the monitoring period. In contrast, shallow tillage showed a similar trend of declining earthworm abundance, which could indicate a deterioration of soil biodiversity conditions. We concluded that different soil management practices greatly affect the soil’s environmental conditions (temperature and humidity), especially in the upper soil layer (up to 15 cm deep), which affects the abundance of the earthworm community. Our results demonstrated that these practices need to be adapted to the climate and weather conditions, and also to human impacts.


Author(s):  
Gary Sutlieff ◽  
Lucy Berthoud ◽  
Mark Stinchcombe

Abstract CBRN (Chemical, Biological, Radiological, and Nuclear) threats are becoming more prevalent, as more entities gain access to modern weapons and industrial technologies and chemicals. This has produced a need for improvements to modelling, detection, and monitoring of these events. While there are currently no dedicated satellites for CBRN purposes, there are a wide range of possibilities for satellite data to contribute to this field, from atmospheric composition and chemical detection to cloud cover, land mapping, and surface property measurements. This study looks at currently available satellite data, including meteorological data such as wind and cloud profiles, surface properties like temperature and humidity, chemical detection, and sounding. Results of this survey revealed several gaps in the available data, particularly concerning biological and radiological detection. The results also suggest that publicly available satellite data largely does not meet the requirements of spatial resolution, coverage, and latency that CBRN detection requires, outside of providing terrain use and building height data for constructing models. Lastly, the study evaluates upcoming instruments, platforms, and satellite technologies to gauge the impact these developments will have in the near future. Improvements in spatial and temporal resolution as well as latency are already becoming possible, and new instruments will fill in the gaps in detection by imaging a wider range of chemicals and other agents and by collecting new data types. This study shows that with developments coming within the next decade, satellites should begin to provide valuable augmentations to CBRN event detection and monitoring. Article Highlights There is a wide range of existing satellite data in fields that are of interest to CBRN detection and monitoring. The data is mostly of insufficient quality (resolution or latency) for the demanding requirements of CBRN modelling for incident control. Future technologies and platforms will improve resolution and latency, making satellite data more viable in the CBRN management field


2021 ◽  
pp. 216769682110251
Author(s):  
Samantha G. Farris ◽  
Mindy M. Kibbey ◽  
Erick J. Fedorenko ◽  
Angelo M. DiBello

The psychological effect of the pandemic and measures taken in response to control viral spread are not yet well understood in university students; in-depth qualitative analysis can provide nuanced information about the young adult distress experience. Undergraduate students ( N = 624) in an early US outbreak “hotspot” completed an online narrative writing about the impact and distress experienced due to the COVID-19 pandemic. Data were collected April-May 2020. A random selection of 50 cases were sampled for thematic analysis. Nine themes were identified: viral outbreak distress, fear of virus contraction/transmission, proximity to virus, dissatisfaction with public response, physical distancing distress, social distancing distress, academic and school-related distress, disruptive changes in health behavior and routines, financial strain and unemployment, worsening of pre-existing mental health problems, and social referencing that minimizes distress. Future work is needed to understand the persistence of the distress, in addition to developing methods for assessment, monitoring, and mitigation of the distress.


2021 ◽  
Author(s):  
Stephen C. L. Watson ◽  
Adrian C. Newton ◽  
Lucy E. Ridding ◽  
Paul M. Evans ◽  
Steven Brand ◽  
...  

Abstract Context Agricultural intensification is being widely pursued as a policy option to improve food security and human development. Yet, there is a need to understand the impact of agricultural intensification on the provision of multiple ecosystem services, and to evaluate the possible occurrence of tipping points. Objectives To quantify and assess the long-term spatial dynamics of ecosystem service (ES) provision in a landscape undergoing agricultural intensification at four time points 1930, 1950, 1980 and 2015. Determine if thresholds or tipping points in ES provision may have occurred and if there are any detectable impacts on economic development and employment. Methods We used the InVEST suite of software models together with a time series of historical land cover maps and an Input–Output model to evaluate these dynamics over an 85-year period in the county of Dorset, southern England. Results Results indicated that trends in ES were often non-linear, highlighting the potential for abrupt changes in ES provision to occur in response to slight changes in underlying drivers. Despite the fluctuations in provision of different ES, overall economic activity increased almost linearly during the study interval, in line with the increase in agricultural productivity. Conclusions Such non-linear thresholds in ES will need to be avoided in the future by approaches aiming to deliver sustainable agricultural intensification. A number of positive feedback mechanisms are identified that suggest these thresholds could be considered as tipping points. However, further research into these feedbacks is required to fully determine the occurrence of tipping points in agricultural systems.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A141-A141
Author(s):  
Yumi Ohtani ◽  
Kayleigh Ross ◽  
Aditya Dandekar ◽  
Rashid Gabbasov ◽  
Michael Klichinsky

BackgroundWe have previously developed CAR-M as a novel cell therapy approach for the treatment of solid tumors.1 CAR-M have the potential to overcome key challenges that cell therapies face in the solid tumor setting – tumor infiltration, immunosuppression, lymphocyte exclusion – and can induce epitope spreading to overcome target antigen heterogeneity. While macrophages transduced with the adenoviral vector Ad5f35 (Ad CAR-M) traffic to tumors, provide robust anti-tumor activity, and recruit and activate T cells, we sought to identify a robust non-viral method of macrophage engineering in order to reduce the cost of goods, manufacturing complexity, and potential immunogenicity associated with viral vectors.MethodsAs innate immune cells, macrophages detect exogenous nucleic acids and respond with inflammatory and apoptotic programs. Thus, we sought to identify a means of mRNA delivery that avoids recognition by innate immune sensors. We screened a broad panel of mRNA encoding an anti-HER2 CAR comprising multiplexed 5’Cap and base modifications using an optimized and scalable electroporation approach and evaluated the impact of interferon-β priming on CAR-M phenotype and function.ResultsWe identified the optimal multiplexed mRNA modifications that led to maximal macrophage viability, transfection efficiency, intensity of CAR expression, and duration of expression. Non-viral HER2 CAR-M phagocytosed and killed human HER2+ tumor cells. Unlike Ad CAR-M, mRNA CAR-M were not skewed toward an M1 state by mRNA electroporation. Priming non-viral CAR-M with IFN-β induced a durable M1 phenotype, as shown by stable upregulation of numerous M1 markers and pathways. IFN-β priming significantly enhanced the anti-tumor activity of CAR but not control macrophages. IFN-β primed mRNA CAR-M were resistant to M2 conversion, maintaining an M1 phenotype despite challenge with various immunosuppressive factors, and converted bystander M2 macrophages toward M1. Interestingly, priming mRNA CAR-M with IFN-β significantly enhanced the persistence of CAR expression, overcoming the known issue of rapid mRNA turnover. RNA-seq analysis revealed that IFN-β priming affected pathways involved in increasing translation and decreasing RNA degradation in human macrophages.ConclusionsWe have established a novel, optimized non-viral CAR-M platform based on chemically modified mRNA and IFN-β priming. IFN-β priming induced a durable M1 phenotype, improved CAR expression, improved CAR persistence, led to enhanced anti-tumor function, and rendered resistance to immunosuppressive factors. This novel platform is amenable to scale-up, GMP manufacturing, and represents an advance in the development of CAR-M.ReferenceKlichinsky M, Ruella M, Shestova O, et al. Human chimeric antigen receptor macrophages for cancer immunotherapy. Nat Biotechnol 2020;38(8):947–953.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
Ting Liu ◽  
Gabriel Lodewijks

Abstract Abstract On the basis of the influence of dry season on ship traffic flow, the gathering and dissipating process of ship traffic flow was researched with Greenshields linear flow—density relationship model, the intrinsic relationship between the ship traffic congestion state and traffic wave in the unclosed restricted channel segment was emphatically explored when the ship traffic flow in a tributary channel inflows, and the influence law of multiple traffic waves on the ship traffic flow characteristics in unclosed restricted segment is revealed. On this basis, the expressions of traffic wave speed and direction, dissipation time of queued ships and the number of ships affected were provided, and combined with Monte Carlo method, the ship traffic flow simulation model in the restricted channel segment was built. The simulation results show that in closed restricted channel segment the dissipation time of ships queued is mainly related to the ship traffic flow rate of segments A and C, and the total number of ships affected to the ship traffic flow rate of segment A. And in unclosed restricted channel segment, the dissipation time and the total number of ships affected are also determined by the meeting time of the traffic waves in addition to the ship traffic flow rate of segments. The research results can provide the theoretical support for further studying the ship traffic flow in unclosed restricted channel segment with multiple tributaries Article Highlights The inflow of tributaries' ship traffic flows has an obvious impact on the traffic conditions in the unenclosed restricted channel segment. The interaction and influence between multiple ship traffic waves and the mechanism of generating new traffic waves are explained. The expression of both dissipation time of queued ships and the total number of ships affected in the closed and unclosed restricted channel segment are given.


Sign in / Sign up

Export Citation Format

Share Document