Developmental psychopathology in an era of molecular genetics and neuroimaging: A developmental neurogenetics approach

2015 ◽  
Vol 27 (2) ◽  
pp. 587-613 ◽  
Author(s):  
Luke W. Hyde

AbstractThe emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.

Cephalalgia ◽  
2018 ◽  
Vol 39 (13) ◽  
pp. 1635-1660 ◽  
Author(s):  
Marta Vila-Pueyo ◽  
Jan Hoffmann ◽  
Marcela Romero-Reyes ◽  
Simon Akerman

Objective To review and discuss the literature relevant to the role of brainstem structure and function in headache. Background Primary headache disorders, such as migraine and cluster headache, are considered disorders of the brain. As well as head-related pain, these headache disorders are also associated with other neurological symptoms, such as those related to sensory, homeostatic, autonomic, cognitive and affective processing that can all occur before, during or even after headache has ceased. Many imaging studies demonstrate activation in brainstem areas that appear specifically associated with headache disorders, especially migraine, which may be related to the mechanisms of many of these symptoms. This is further supported by preclinical studies, which demonstrate that modulation of specific brainstem nuclei alters sensory processing relevant to these symptoms, including headache, cranial autonomic responses and homeostatic mechanisms. Review focus This review will specifically focus on the role of brainstem structures relevant to primary headaches, including medullary, pontine, and midbrain, and describe their functional role and how they relate to mechanisms of primary headaches, especially migraine.


Author(s):  
Κατερίνα Μανιαδάκη

The aim of this paper is to provide evidence regarding the necessity and the effectiveness of early intervention for ADHD, by reviewing the most important international early intervention programs for ADHD and by presenting a relevant program implemented in Greece, based on the multi-level approach in developmental psychopathology. These programs are underpinned theoretically by the biopsychosocial epigenetic model which claims that ADHD is not just the outcome of structural and functional neurobiological deficits but results from the dynamic interplay among genetic, neurophysiological, neurochemical, and environmental factors, affecting brain structure and function early in the process of development. Early intervention focuses on those processes that take place very early in development and have a causal relationship with ADHD, with the aim of modifying the underlying neurophysiology and producing generalized long-lasting change. The efficacy of early intervention mainly lies in the fact that it takes place during a period when brain plasticity is great. Plasticity is an intrinsic property of the brain that ensures dynamic modifications at multiple levels of neural organization, allowing the brain to process, encode, and implement new knowledge. Although this neuronal development is to a great extent genetically programmed, it is widely acknowledged that environment also plays a major role through the process of epigenesis by moderating gene expression with subsequent alterations in brain structure and function and allowing even modification of certain deficient structures.


2020 ◽  
Author(s):  
Milena Rmus ◽  
Samuel McDougle ◽  
Anne Collins

Reinforcement learning (RL) models have advanced our understanding of how animals learn and make decisions, and how the brain supports some aspects of learning. However, the neural computations that are explained by RL algorithms fall short of explaining many sophisticated aspects of human decision making, including the generalization of learned information, one-shot learning, and the synthesis of task information in complex environments. Instead, these aspects of instrumental behavior are assumed to be supported by the brain’s executive functions (EF). We review recent findings that highlight the importance of EF in learning. Specifically, we advance the theory that EF sets the stage for canonical RL computations in the brain, providing inputs that broaden their flexibility and applicability. Our theory has important implications for how to interpret RL computations in the brain and behavior.


Author(s):  
Alyssa L. Pedersen ◽  
Colin J. Saldanha

Given the profound influence of steroids on the organization and activation of the vertebrate central nervous system (CNS), it is perhaps not surprising that these molecules are involved in processes that restructure the cytoarchitecture of the brain. This includes processes such as neurogenesis and the connectivity of neural circuits. In the last 30 years or so, we have learned that the adult vertebrate brain is far from static; it responds to changes in androgens and estrogens, with dramatic alterations in structure and function. Some of these changes have been directly linked to behavior, including sex, social dominance, communication, and memory. Perhaps the most dramatic levels of neuroplasticity are observed in teleosts, where circulating and centrally derived steroids can affect several end points, including cell proliferation, migration, and behavior. Similarly, in passerine songbirds and mammals, testosterone and estradiol are important modulators of adult neuroplasticity, with documented effects on areas of the brain necessary for complex behaviors, including social communication, reproduction, and learning. Given that many of the cellular processes that underlie neuroplasticity are often energetically demanding and temporally protracted, it is somewhat surprising that steroids can affect physiological and behavioral end points quite rapidly. This includes recent demonstrations of extremely rapid effects of estradiol on synaptic neurotransmission and behavior in songbirds and mammals. Indeed, we are only beginning to appreciate the role of temporally and spatially constrained neurosteroidogenesis, like estradiol and testosterone being made in the brain, on the rapid regulation of complex behaviors.


1993 ◽  
Vol 10 (1) ◽  
pp. 2-5
Author(s):  
Lesley J. Rogers

AbstractCurrently there is an increase in the number of articles published in scientific journals and in the popular scientific media that claim a biological basis for sex differences in cognition and in certain structures in the brain. It can be argued that there is over-emphasis on the differences rather than similarities between the sexes, but it is even more important to question the assumed causation of the differences. This paper discusses recent evidence for an interactive role of early experience and hormonal condition in determining sex differences in brain structure and function. Although early studies using rats were thought to show that the male sex hormone, testosterone, acts on the brain in early life to direct its differentiation into either the male or female form, it is know known that this result comes about indirectly by changing the mother’s behaviour towards the pups. The hormone does not act on the brain directly but rather it alters the environment in which the young animals are rasied and this, in turn, influences the development of the brain. Indeed, the brain is in dynamic register with its environment both during development and in adulthood. Other examples also show that old ideas of rigid biological determination of brain structure and function need to be laid aside.The hypotheses for hormonal causation of sex differences humans rely heavily, if not exclusively, on the earlier interpretation of the experiments with rats, and there seems to be resistance to changing these notions based on the new discoveries. Apparently, there is strong pressure to cling on to biological determinist theories for sex differences in behaviour, and this has profound effects on social and educational policy. For example, biological determinism has been used to justify under representation of women in certain professions. Realisation of the dramatic effects that environmental stimulation and learning can have on the development of brain and behaviour leads us to an optimistic position for social change towards equality for women.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Charles A. Nelson ◽  
Charles H. Zeanah ◽  
Nathan A. Fox

Experience plays an essential role in building brain architecture after birth. The question we address in this paper is what happens to brain and behavior when a young child is deprived of key experiences during critical periods of brain development. We focus in particular on the consequences of institutional rearing, with implication for the tens of millions of children around the world who from an early age experience profound psychosocial deprivation. Evidence is clear that deprivation can lead to a host of both short- and long-term consequences, including perturbations in brain structure and function, changes at cellular and molecular levels, and a plethora of psychological and behavioral impairments.


2021 ◽  
Vol 13 ◽  
Author(s):  
Xiao-qing Wang ◽  
He Li ◽  
Xiang-nan Li ◽  
Cong-hu Yuan ◽  
Hang Zhao

Aging is becoming a severe social phenomenon globally, and the improvements in health care and increased health awareness among the elderly have led to a dramatic increase in the number of surgical procedures. Because of the degenerative changes in the brain structure and function in the elderly, the incidence of perioperative neurocognitive disorders (PND) is much higher in elderly patients than in young people following anesthesia/surgery. PND is attracting more and more attention, though the exact mechanisms remain unknown. A growing body of evidence has shown that the gut microbiota is likely involved. Recent studies have indicated that the gut microbiota may affect postoperative cognitive function via the gut-brain axis. Nonetheless, understanding of the mechanistic associations between the gut microbiota and the brain during PND progression remains very limited. In this review, we begin by providing an overview of the latest progress concerning the gut-brain axis and PND, and then we summarize the influence of perioperative factors on the gut microbiota. Next, we review the literature on the relationship between gut microbiota and PND and discuss how gut microbiota affects cognitive function during the perioperative period. Finally, we explore effective early interventions for PND to provide new ideas for related clinical research.


2020 ◽  
Vol 15 (11) ◽  
pp. 1059-1074
Author(s):  
Muhammad Afzal ◽  
Sayyeda Farwa Mazhar ◽  
Sadia Sana ◽  
Muhammad Naeem ◽  
Muhammad Hidayat Rasool ◽  
...  

The role of the human microbiome in the brain and behavioral development is an area of increasing attention. Recent investigations have found that diverse mechanisms and signals including the immune, endocrine and neural associations are responsible for the communication between gut microbiota and the brain. The studies have suggested that alteration of intestinal microbiota using probiotic formulations may offer a significant role in the maturation and organization of the brain and can shape the brain and behavior as well as mood and cognition in human subjects. The understanding of the possible impact of gut microflora on neurological function is a promising phenomenon that can surely transform the neurosciences and may decipher the novel etiologies for neurodegenerative and psychiatric disorders.


2009 ◽  
Vol 68 (4) ◽  
pp. 408-415 ◽  
Author(s):  
M. J. Dauncey

Nutrition can affect the brain throughout the life cycle, with profound implications for mental health and degenerative disease. Many aspects of nutrition, from entire diets to specific nutrients, affect brain structure and function. The present short review focuses on recent insights into the role of nutrition in cognition and mental health and is divided into four main sections. First, the importance of nutritional balance and nutrient interactions to brain health are considered by reference to the Mediterranean diet, energy balance, fatty acids and trace elements. Many factors modulate the effects of nutrition on brain health and inconsistencies between studies can be explained in part by differences in early environment and genetic variability. Thus, these two factors are considered in the second and third parts of the present review. Finally, recent findings on mechanisms underlying the actions of nutrition on the brain are considered. These mechanisms involve changes in neurotrophic factors, neural pathways and brain plasticity. Advances in understanding the critical role of nutrition in brain health will help to fulfil the potential of nutrition to optimise brain function, prevent dysfunction and treat disease.


2019 ◽  
Author(s):  
Maxwell A Bertolero ◽  
Danielle S Bassett

This article is part a forthcoming Topics in Cognitive Science Special Issue: "Levels of Explanation in Cognitive Science: From Molecules to Culture," Matteo Colombo and Markus Knauff (Topic Editors). Network neuroscience represents the brain as a collection of regions and inter-regional connections. Given its ability to formalize systems-level models, network neuroscience has generated unique explanations of neural function and behavior. The mechanistic status of these explanations and how they can contribute to and fit within the field of neuroscience as a whole has received careful treatment from philosophers. However, these philosophical contributions have not yet reached many neuroscientists. Here we complement formal philosophical efforts by providing an applied perspective from and for neuroscientists. We discuss the mechanistic status of the explanations offered by network neuroscience and how they contribute to, enhance, and interdigitate with other types of explanations in neuroscience. In doing so, we rely on philosophical work concerning the role of causality, scale, and mechanisms in scientific explanations. In particular, we make the distinction between an explanation and the evidence supporting that explanation, and we argue for a scale-free nature of mechanistic explanations. In the course of these discussions, we hope to provide a useful applied framework in which network neuroscience explanations can be exercised across scales and combined with other fields of neuroscience to gain deeper insights into the brain and behavior.


Sign in / Sign up

Export Citation Format

Share Document