Steroids and Plasticity

Author(s):  
Alyssa L. Pedersen ◽  
Colin J. Saldanha

Given the profound influence of steroids on the organization and activation of the vertebrate central nervous system (CNS), it is perhaps not surprising that these molecules are involved in processes that restructure the cytoarchitecture of the brain. This includes processes such as neurogenesis and the connectivity of neural circuits. In the last 30 years or so, we have learned that the adult vertebrate brain is far from static; it responds to changes in androgens and estrogens, with dramatic alterations in structure and function. Some of these changes have been directly linked to behavior, including sex, social dominance, communication, and memory. Perhaps the most dramatic levels of neuroplasticity are observed in teleosts, where circulating and centrally derived steroids can affect several end points, including cell proliferation, migration, and behavior. Similarly, in passerine songbirds and mammals, testosterone and estradiol are important modulators of adult neuroplasticity, with documented effects on areas of the brain necessary for complex behaviors, including social communication, reproduction, and learning. Given that many of the cellular processes that underlie neuroplasticity are often energetically demanding and temporally protracted, it is somewhat surprising that steroids can affect physiological and behavioral end points quite rapidly. This includes recent demonstrations of extremely rapid effects of estradiol on synaptic neurotransmission and behavior in songbirds and mammals. Indeed, we are only beginning to appreciate the role of temporally and spatially constrained neurosteroidogenesis, like estradiol and testosterone being made in the brain, on the rapid regulation of complex behaviors.

2021 ◽  
Vol 11 ◽  
Author(s):  
Saboor Ahmad ◽  
Shahmshad Ahmed Khan ◽  
Khalid Ali Khan ◽  
Jianke Li

Hypopharyngeal glands (HGs) are the most important organ of hymenopterans which play critical roles for the insect physiology. In honey bees, HGs are paired structures located bilaterally in the head, in front of the brain between compound eyes. Each gland is composed of thousands of secretory units connecting to secretory duct in worker bees. To better understand the recent progress made in understanding the structure and function of these glands, we here review the ontogeny of HGs, and the factors affecting the morphology, physiology, and molecular basis of the functionality of the glands. We also review the morphogenesis of HGs in the pupal and adult stages, and the secretory role of the glands across the ages for the first time. Furthermore, recent transcriptome, proteome, and phosphoproteome analyses have elucidated the potential mechanisms driving the HGs development and functionality. This adds a comprehensive novel knowledge of the development and physiology of HGs in honey bees over time, which may be helpful for future research investigations.


2015 ◽  
Vol 27 (2) ◽  
pp. 587-613 ◽  
Author(s):  
Luke W. Hyde

AbstractThe emerging field of neurogenetics seeks to model the complex pathways from gene to brain to behavior. This field has focused on imaging genetics techniques that examine how variability in common genetic polymorphisms predict differences in brain structure and function. These studies are informed by other complimentary techniques (e.g., animal models and multimodal imaging) and have recently begun to incorporate the environment through examination of Imaging Gene × Environment interactions. Though neurogenetics has the potential to inform our understanding of the development of psychopathology, there has been little integration between principles of neurogenetics and developmental psychopathology. The paper describes a neurogenetics and Imaging Gene × Environment approach and how these approaches have been usefully applied to the study of psychopathology. Six tenets of developmental psychopathology (the structure of phenotypes, the importance of exploring mechanisms, the conditional nature of risk, the complexity of multilevel pathways, the role of development, and the importance of who is studied) are identified, and how these principles can further neurogenetics applications to understanding the development of psychopathology is discussed. A major issue of this piece is how neurogenetics and current imaging and molecular genetics approaches can be incorporated into developmental psychopathology perspectives with a goal of providing models for better understanding pathways from among genes, environments, the brain, and behavior.


2019 ◽  
Author(s):  
Michael Rebagliati ◽  
Gonçalo C. Vilhais-Neto ◽  
Alexandra Petiet ◽  
Merlin Lange ◽  
Arthur Michaut ◽  
...  

While the vertebrate brain appears largely bilaterally symmetrical in humans, it presents local morphological Left-Right (LR) asymmetries as, for instance, in the petalia. Moreover, higher functions such as speech or handedness are asymmetrically localized in the cortex. How these brain asymmetries are generated remains unknown. Here, we reveal a striking parallel between the control of bilateral symmetry in the brain and in the precursors of vertebrae called somites, where a “default” asymmetry is buffered by Retinoic Acid (RA) signaling. This mechanism is evident in zebrafish and mouse and, when perturbed in both species, it translates in the brain into lateralized alterations of patterning, neuronal differentiation and behavior. We demonstrate that altering levels of the mouse RA coactivator Rere results in subtle cortex asymmetry and profoundly altered handedness, linking patterning and function in the motor cortex. Together our data uncover a novel mechanism that could underlie the establishment of brain asymmetries and handedness in vertebrates.


2006 ◽  
Vol 34 (5) ◽  
pp. 863-867 ◽  
Author(s):  
S. Mizielinska ◽  
S. Greenwood ◽  
C.N. Connolly

Maintaining the correct balance in neuronal activation is of paramount importance to normal brain function. Imbalances due to changes in excitation or inhibition can lead to a variety of disorders ranging from the clinically extreme (e.g. epilepsy) to the more subtle (e.g. anxiety). In the brain, the most common inhibitory synapses are regulated by GABAA (γ-aminobutyric acid type A) receptors, a role commensurate with their importance as therapeutic targets. Remarkably, we still know relatively little about GABAA receptor biogenesis. Receptors are constructed as pentameric ion channels, with α and β subunits being the minimal requirement, and the incorporation of a γ subunit being necessary for benzodiazepine modulation and synaptic targeting. Insights have been provided by the discovery of several specific assembly signals within different GABAA receptor subunits. Moreover, a number of recent studies on GABAA receptor mutations associated with epilepsy have further enhanced our understanding of GABAA receptor biogenesis, structure and function.


2021 ◽  
Vol 11 (3) ◽  
pp. 334
Author(s):  
Giulia Bivona ◽  
Bruna Lo Sasso ◽  
Caterina Maria Gambino ◽  
Rosaria Vincenza Giglio ◽  
Concetta Scazzone ◽  
...  

Vitamin D and cognition is a popular association, which led to a remarkable body of literature data in the past 50 years. The brain can synthesize, catabolize, and receive Vitamin D, which has been proved to regulate many cellular processes in neurons and microglia. Vitamin D helps synaptic plasticity and neurotransmission in dopaminergic neural circuits and exerts anti-inflammatory and neuroprotective activities within the brain by reducing the synthesis of pro-inflammatory cytokines and the oxidative stress load. Further, Vitamin D action in the brain has been related to the clearance of amyloid plaques, which represent a feature of Alzheimer Disease (AD), by the immune cell. Based on these considerations, many studies have investigated the role of circulating Vitamin D levels in patients affected by a cognitive decline to assess Vitamin D’s eventual role as a biomarker or a risk factor in AD. An association between low Vitamin D levels and the onset and progression of AD has been reported, and some interventional studies to evaluate the role of Vitamin D in preventing AD onset have been performed. However, many pitfalls affected the studies available, including substantial discrepancies in the methods used and the lack of standardized data. Despite many studies, it remains unclear whether Vitamin D can have a role in cognitive decline and AD. This narrative review aims to answer two key questions: whether Vitamin D can be used as a reliable tool for diagnosing, predicting prognosis and response to treatment in AD patients, and whether it is a modifiable risk factor for preventing AD onset.


2021 ◽  
Vol 22 (9) ◽  
pp. 4359
Author(s):  
Sara Martín-Villanueva ◽  
Gabriel Gutiérrez ◽  
Dieter Kressler ◽  
Jesús de la Cruz

Ubiquitin is a small protein that is highly conserved throughout eukaryotes. It operates as a reversible post-translational modifier through a process known as ubiquitination, which involves the addition of one or several ubiquitin moieties to a substrate protein. These modifications mark proteins for proteasome-dependent degradation or alter their localization or activity in a variety of cellular processes. In most eukaryotes, ubiquitin is generated by the proteolytic cleavage of precursor proteins in which it is fused either to itself, constituting a polyubiquitin precursor, or as a single N-terminal moiety to ribosomal proteins, which are practically invariably eL40 and eS31. Herein, we summarize the contribution of the ubiquitin moiety within precursors of ribosomal proteins to ribosome biogenesis and function and discuss the biological relevance of having maintained the explicit fusion to eL40 and eS31 during evolution. There are other ubiquitin-like proteins, which also work as post-translational modifiers, among them the small ubiquitin-like modifier (SUMO). Both ubiquitin and SUMO are able to modify ribosome assembly factors and ribosomal proteins to regulate ribosome biogenesis and function. Strikingly, ubiquitin-like domains are also found within two ribosome assembly factors; hence, the functional role of these proteins will also be highlighted.


2006 ◽  
Vol 281 (43) ◽  
pp. 32841-32851 ◽  
Author(s):  
Brian DeBosch ◽  
Nandakumar Sambandam ◽  
Carla Weinheimer ◽  
Michael Courtois ◽  
Anthony J. Muslin

The Akt family of serine-threonine kinases participates in diverse cellular processes, including the promotion of cell survival, glucose metabolism, and cellular protein synthesis. All three known Akt family members, Akt1, Akt2 and Akt3, are expressed in the myocardium, although Akt1 and Akt2 are most abundant. Previous studies demonstrated that Akt1 and Akt3 overexpression results in enhanced myocardial size and function. Yet, little is known about the role of Akt2 in modulating cardiac metabolism, survival, and growth. Here, we utilize murine models with targeted disruption of the akt2 or the akt1 genes to demonstrate that Akt2, but not Akt1, is required for insulin-stimulated 2-[3H]deoxyglucose uptake and metabolism. In contrast, akt2-/- mice displayed normal cardiac growth responses to provocative stimulation, including ligand stimulation of cultured cardiomyocytes, pressure overload by transverse aortic constriction, and myocardial infarction. However, akt2-/- mice were found to be sensitized to cardiomyocyte apoptosis in response to ischemic injury, and apoptosis was significantly increased in the peri-infarct zone of akt2-/- hearts 7 days after occlusion of the left coronary artery. These results implicate Akt2 in the regulation of cardiomyocyte metabolism and survival.


Author(s):  
Andrea Sanchez-Navarro ◽  
Isaac González-Soria ◽  
Rebecca Caldiño-Bohn ◽  
Norma A. Bobadilla

Serpins are a superfamily of proteins characterized by their common function as serine protease inhibitors. So far, 36 serpins from nine clades have been identified. These proteins are expressed in all the organs and are involved in multiple important functions such as the regulation of blood pressure, hormone transport, insulin sensitivity, and the inflammatory response. Diseases such as obesity, diabetes, cardiovascular, and kidney disorders are intensively studied to find effective therapeutic targets. Given serpins' outstanding functionality, the deficiency or overexpression of certain types of serpin have been associated with diverse pathophysiological events. In particular, we will focus on reviewing the studies evaluating the participation of serpins, and particularly SerpinA3, in diverse diseases that occur in relevant organs such as the brain, retinas, corneas, lungs, cardiac vasculature, and kidneys. In this review, we summarize the role of serpins in physiological and pathophysiological processes, as well as recent evidence on the crucial role of SerpinA3 in several pathologies. Finally, we emphasize the importance of SerpinA3 in regulating cellular processes such as angiogenesis, apoptosis, fibrosis, oxidative stress, and the inflammatory response.


2017 ◽  
Vol 23 (6) ◽  
pp. 587-604 ◽  
Author(s):  
Julien Gibon ◽  
Philip A. Barker

Neurotrophins have been intensively studied and have multiple roles in the brain. Neurotrophins are first synthetized as proneurotrophins and then cleaved intracellularly and extracellularly. Increasing evidences demonstrate that proneurotrophins and mature neurotrophins exerts opposing role in the central nervous system. In the present review, we explore the role of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin 3 (NT3), and neurotrophin 4 (NT4) and their respective proform in cellular processes related to learning and memory. We focused on their roles in synaptic activity and plasticity in the brain with an emphasis on long-term potentiation, long-term depression, and basal synaptic transmission in the hippocampus and the temporal lobe area. We also discuss new findings on the role of the Val66Met polymorphism on the BDNF propeptide on synaptic activity.


2021 ◽  
Vol 134 (16) ◽  
Author(s):  
Robert Mahen

ABSTRACT To gain a holistic understanding of cellular function, we must understand not just the role of individual organelles, but also how multiple macromolecular assemblies function collectively. Centrioles produce fundamental cellular processes through their ability to organise cytoskeletal fibres. In addition to nucleating microtubules, centrioles form lesser-known polymers, termed rootlets. Rootlets were identified over a 100 years ago and have been documented morphologically since by electron microscopy in different eukaryotic organisms. Rootlet-knockout animals have been created in various systems, providing insight into their physiological functions. However, the precise structure and function of rootlets is still enigmatic. Here, I consider common themes of rootlet function and assembly across diverse cellular systems. I suggest that the capability of rootlets to form physical links from centrioles to other cellular structures is a general principle unifying their functions in diverse cells and serves as an example of how cellular function arises from collective organellar activity.


Sign in / Sign up

Export Citation Format

Share Document