A response of the imbibed dormant red rice caryopsis to biotic challenges involves extracellular pH increase to elicit superoxide production

2018 ◽  
Vol 28 (4) ◽  
pp. 261-271 ◽  
Author(s):  
Sepideh Ghotbzadeh ◽  
Alberto Gianinetti

AbstractSeeds often survive in the soil in a dormant state, but their persistence is endangered by micro-organisms that could feed on them. Seed–microbe interactions in the soil are, however, poorly understood. We used dormant caryopses of red rice to study the defence response induced by pronase, a mixture of proteases secreted by Streptomyces griseus, a non-pathogenic bacterium. Pronase was shown to activate the plant immune reaction, indicating that its activity was recognized as a potential microbial attack. The defence reaction included extracellular alkalinization and superoxide production, and the former was necessary to activate the latter, since buffering at pH 6 inhibited the oxidative burst. Alkalinization was sufficient to trigger the oxidative burst, as superoxide production increased when caryopses were incubated in buffered solutions of increasing pH without pronase. Release of proanthocyanidins was observed, with or without pronase. These diverse mechanisms are hypothesized to cooperate in reinforcing seed protection. Finally, time profiles of superoxide production by dormant and non-dormant red rice caryopses during imbibition did not support a relationship between extracellular superoxide and dormancy breaking or germination. Thus, the role of this reactive oxygen species in red rice imbibed caryopses appears to be essentially aimed at defence against attacks by challenging micro-organisms.

2019 ◽  
Vol 14 (1) ◽  
pp. 92
Author(s):  
Dr. Maha Abdul- Kareem Mahmood ◽  
Dr. Huda Elias Ali ◽  
Dr. Haraa Khairi Abdul-Kadher

Microbes are considered as the primary etiologic agents in endodontic diseases.Disinfection of the root canal is obtained by the combined effect of biomechanicalpreparation, irrigation and intra canal medicament. The aim of the present study wasto assess the antimicrobial activity of intracanal medicaments (formocresol andEndosepton) against two micro organisms (Streptococcus mutans and staphylococcusaureus) isolated from 15 necrotic pulps of primary molars indicated for pulpectomyprocedure. The samples were cultured, and purified using microbiological evaluation.Broth dilution test was performed in our study by preparing test tubes containing10 ml of BHI broth (pH. 7) which then inoculated with strains of the tested bacteriaand incubated at 37 C° for 24 h. After over night incubaction, ten fold dilution weremade in test tubes containing 9 ml of normal saline by adding 1 ml of the inoculum tothe first tube . Then from dilution 10-1 , 0.1 ml of cell suspension was added to 9.9 mlof formocresol and endosepton, then 0.1 ml was taken and spread on duplicates ofBHI agar plates at different intervals and incubated aerobically for 24 h. at 37 C°.Colonies on the plates were counted after incubation and CFU/mL (colony formingunit) was calculated. Our results indicating that there were no significant differencesbetween the intracanal medicaments, but there were high significant differencesbetween the intervals time of the study. We concluded that both materials had greatantibacterial effect against the pathogens commonly isolated from necrotic pulpaltissue of primary teeth.


2021 ◽  
Vol 22 (9) ◽  
pp. 4812
Author(s):  
Cunchun Yang ◽  
W. G. Dilantha Fernando

An oxidative burst is an early response of plants to various biotic/abiotic stresses. In plant-microbe interactions, the plant body can induce oxidative burst to activate various defense mechanisms to combat phytopathogens. A localized oxidative burst is also one of the typical behaviors during hypersensitive response (HR) caused by gene-for-gene interaction. In this study, the occurrence of oxidative burst and its signaling pathways was studied from different levels of disease severity (i.e., susceptible, intermediate, and resistant) in the B. napus–L. maculans pathosystem. Canola cotyledons with distinct levels of resistance exhibited differential regulation of the genes involved in reactive oxygen species (ROS) accumulation and responses. Histochemical assays were carried out to understand the patterns of H2O2 accumulation and cell death. Intermediate and resistant genotypes exhibited earlier accumulation of H2O2 and emergence of cell death around the inoculation origins. The observations also suggested that the cotyledons with stronger resistance were able to form a protective region of intensive oxidative bursts between the areas with and without hyphal intrusions to block further fungal advancement to the uninfected regions. The qPCR analysis suggested that different onset patterns of some marker genes in ROS accumulation/programmed cell death (PCD) such as RBOHD, MPK3 were associated with distinct levels of resistance from B. napus cultivars against L. maculans. The observations and datasets from this article indicated the distinct differences in ROS-related cellular behaviors and signaling between compatible and incompatible interactions.


2005 ◽  
Vol 54 (3) ◽  
pp. 97-105 ◽  
Author(s):  
M. F. Sepulveda ◽  
E. C. Greenaway ◽  
M. Avella ◽  
N. T. Goode ◽  
F. M. Cunningham

1993 ◽  
Vol 31 (1) ◽  
pp. 1-13 ◽  
Author(s):  
M. Wainwright ◽  
Tasneem Adam Ali ◽  
F. Barakah
Keyword(s):  

2008 ◽  
Vol 36 (6) ◽  
pp. 1461-1466 ◽  
Author(s):  
Peter Garred

MBL (mannose-binding lectin) is primarily a liver-derived collagen-like serum protein. It binds sugar structures on micro-organisms and on dying host cells and is one of the four known mediators that initiate activation of the complement system via the lectin pathway. Common variant alleles situated both in promoter and structural regions of the human MBL gene (MBL2) influence the stability and the serum concentration of the protein. Epidemiological studies have suggested that genetically determined variations in MBL serum concentrations influence the susceptibility to and the course of different types of infectious, autoimmune, neoplastic, metabolic and cardiovascular diseases, but this is still a subject under discussion. The fact that these genetic variations are very frequent, indicates a dual role of MBL. This overview summarizes the current molecular understanding of human MBL2 genetics.


1988 ◽  
Vol 24 (2) ◽  
pp. 75-79
Author(s):  
V.P. Sreedharan ◽  
C.K.S. Pillai ◽  
M.A. Venkataswamy ◽  
P.K. Rohatgi
Keyword(s):  

2021 ◽  
Author(s):  
Alexandros Adamis ◽  
Astrid Veronig ◽  
Tatiana Podladchikova ◽  
Karin Dissauer ◽  
Rositsa Miteva ◽  
...  

<p><strong>We present a statistical study on the early evolution of coronal mass ejections (CMEs), to better understand the effect of CME (over)- expansion and how it relates to the production of Solar Energetic Particle (SEP) events. We study the kinematic CME characteristics in terms of their radial and lateral expansion, from their early evolution in the Sun’s atmosphere as observed in EUV imagers and coronagraphs. The data covers 72 CMEs that occurred in the time range of July 2010 to September 2012, where the twin STEREO spacecraft where in quasiquadrature </strong><strong>to the Sun-Earth line. From the STEREO point-of-view, the CMEs under study were observed close to the limb. We calculated the radial and lateral height (width) versus time profiles and derived the corresponding peak and mean velocities, accelerations, and angular expansion rates, with particular emphasis on the role of potential lateral overexpansion in the early CME evolution. We find high correlations between the radial and lateral CME velocities and accelerations. CMEs that are associated tend to be located at the high-value end of the distributions of velocities, widths, and expansion rates compared to nonSEP associated events.<br></strong></p>


Author(s):  
Barbara Stadler KAHLOW ◽  
Rodrigo Araldi NERY ◽  
Thelma L SKARE ◽  
Carmen Australia Paredes Marcondes RIBAS ◽  
Gabriela Piovezani Ramos ◽  
...  

Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes carbohydrate patterns found on the surface of a large number of pathogenic micro-organisms, activating the complement system. However, this protein seems to increase the tissue damage after ischemia. In this paper is reviewed some aspects of harmful role of the mannose binding lectin in ischemia/reperfusion injury.


Sign in / Sign up

Export Citation Format

Share Document