Seeds of the threatened dry rainforest tree Cadellia pentastylis (Surianaceae) are non-dormant

2022 ◽  
pp. 1-5
Author(s):  
Nathan J. Emery ◽  
Justin C. Collette

Abstract Cadellia pentastylis (Surianaceae) is an Australian endemic threatened rainforest tree. Irregular flowering and fruiting events coupled with high rates of infertility and insect predation has meant that seed testing has not been possible for this species. Seeds were opportunistically collected from a wild population in early 2021, which allowed for the first germination tests to be conducted. In this study, the presence of physical dormancy was examined by performing an imbibition test using scarified and non-scarified seeds. We also investigated whether a 5-min heat shock treatment at temperatures ranging from 60 to 120°C improved germination success. The presence of physiological dormancy was also examined by recording germination success following a gibberellic acid or smoke-water pre-treatment. Both scarified and non-scarified seeds readily imbibed water over a 72-h period, and several seeds had germinated in both treatments after 48 h. Final germination proportion and t50 following a heat shock, gibberellic acid or smoke-water pre-treatment did not significantly differ from the controls. We conclude that C. pentastylis seeds are non-dormant. Although a palisade cell layer has been reported in the endocarp, our results suggest that this layer may not be sufficiently formed to restrict germination. We recommend that seeds are collected from populations following dispersal and propagated shortly after or stored as conservation collections in ex situ Seedbanks.

2018 ◽  
Vol 46 (2) ◽  
pp. 376-380 ◽  
Author(s):  
Muhip HİLOOĞLU ◽  
Emel SÖZEN ◽  
Ersin YÜCEL ◽  
Ali KANDEMİR

Verbascum calycosum is an endemic plant species having considerable narrow distribution in Erzincan (Turkey) region. This species is known from only a single population and its habitats are highly threatened due to intensive human activities and soil erosion. In this study, the germination behavior of V. calycosum under different concentrations of NaCl, HCl, KNO3, GA3 (100 and 200 μM), hot-cold stratification and mechanical scarification were investigated. Seeds were exposed to a photoperiod of 8 h light/16 h dark with a 23/18 °C thermoperiod. Germination rates increased with GA3-100 µM (39%), GA3-200 µM (54.5%), mechanical scarification (34.5%) and cold stratification treatments (+4 °C, 23.25%; -20 °C, 18.25%) on the other hand, KNO3, NaCl, HCl and stratification with hot water treatments have decreased germination rates significantly when compared to the control (12.25%). Increased germination after GA3 application and mechanical scarification indicated that seeds of V. calycosum exhibited both non-deep and intermediate physiological dormancy as well as physical dormancy due to its hard seed coat. The highest speed of germination index was obtained at cold stratification of +4 °C and -20 °C (10.3). This study represents first report about seed dormancy and germination characteristics of V. calycosum. Overall, these results will provide valuable data for ex situ conservation of this rare endemic plant.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Dustin Wolkis ◽  
Steve Blackwell ◽  
Shyla Kaninaualiʻi Villanueva

Abstract Knowledge of seed dormancy and optimal propagation techniques is crucial for successful ex situ restoration and reintroduction projects, and determining the seed storage behaviour of a species is critical for the long-term conservation of seeds, further supporting future ex situ efforts. Eryngium sparganophyllum (Apiaceae) is a globally critically endangered plant species endemic to ciénega wetlands of southwest North America. To support in situ and ex situ conservation efforts of E. sparganophyllum, we asked (i) how does the embryo: seed (E:S) ratio change over time once imbibed, (ii) how does germination respond with varying periods of exposure to cold (5°C) and warm (25°C) stratification, and concentrations of gibberellic acid (GA3). By answering these questions, (iii) can dormancy class be inferred, and (iv) what storage behaviour category is exhibited? To answer these questions, we collected seeds in Southern Arizona from one of the few remaining wild populations. We measured embryo growth and tested the effects of cold (0–18 weeks) and warm (0 and 4 weeks) stratification, and 0–1000 ppm gibberellic acid on germination. We also tested the effects of cold (−80°C) dry (~20% equilibrium relative humidity) storage on germination. We found that (i) embryos grow inside seeds prior to germination; (ii) compared to control, cold stratification for at least 6 weeks increased germination and warm stratification had no effect; (iii) 1000-ppm GA3 had the highest germination success; (iv) therefore this species exhibits morphophysiological dormancy; and (v) seeds are orthodox and can therefore be conserved using conventional storage methods. This information will aid managers in the propagation of E. sparganophyllum that is crucial for in situ reintroduction and restoration projects, and seed banking represents a critical ex situ conservation strategy for the preservation of this species.


2016 ◽  
Vol 8 (2) ◽  
pp. 77
Author(s):  
Stephen I. Mensah ◽  
Chimezie Ekeke

<p class="1Body">The seed dormancy of <em>Senna obtusifolia</em> was investigated through various methods, namely pretreatments in concentrated sulfuric acid, 2% potassium nitrate (KNO<sub>3</sub>), 99% ethanol, 99% methanol, and in hydrogen perioxide; examination of the seed coverings; and the determination of water uptake by the seeds in order to ascertain the most effective technique for breaking dormancy and also determine the dormancy type. The results showed that sulfuric acid treatment recorded the highest germination (100%); followed by 2% hydrogen peroxide treatment (24%) in 15minutes immersion. The methanol and ethanol pretreatments gave 18.33% and 16.5% germinations respectively. Pretreatment in 2% potassium nitrate gave the lowest germination (8.50%), while the intact seeds of <em>S. obtusifiolia</em> (control) gave 0% germination. The anatomy of the seed coat indicated the presence of hard, thickened and specialized cells of cuticle, macrosclereids, osteoscereids, and disintegrated parenchyma layers. The water uptake of intact seeds was low (13.5%) after 24 hr imbibitions. These findings revealed that the seed coat acts as barrier to germination by preventing water absorption, possibly gaseous diffusion in and out of the seed and conferring mechanical resistance to the protrusion of embryo. Pretreatments, such as immersion in H<sub>2</sub>SO<sub>4 </sub>will soften the seed coat and permit germination. Seed dormancy in <em>S. obtusifolia </em>can be considered of physical nature and classified as physical dormancy. The results obtained in this study may serve as useful information in the production and improvement of <em>S. obtusifolia </em>seedlings, as knowledge on seed dormancy and germination is a critical factor and requirements to the understanding of the propagation of this plant either in situ or ex-situ, in view of the economic potentials/attributes of this species.</p>


2007 ◽  
Vol 47 (6) ◽  
pp. 683 ◽  
Author(s):  
Pippa J. Michael ◽  
Kathryn J. Steadman ◽  
Julie A. Plummer

Seed development was examined in Malva parviflora. The first flower opened 51 days after germination; flowers were tagged on the day that they opened and monitored for 33 days. Seeds were collected at 12 stages during this period and used to determine moisture content, germination of fresh seeds and desiccation tolerance (seeds dried to 10% moisture content followed by germination testing). Seed moisture content decreased as seeds developed, whereas fresh (max. 296 mg) and dry weight (max. 212 mg) increased to peak at 12–15 and ~21 days after flowering (DAF), respectively. Therefore, physiological maturity occurred at 21 DAF, when seed moisture content was 16–21%. Seeds were capable of germinating early in development, reaching a maximum of 63% at 9 DAF, but germination declined as development continued, presumably due to the imposition of physiological dormancy. Physical dormancy developed at or after physiological maturity, once seed moisture content declined below 20%. Seeds were able to tolerate desiccation from 18 DAF; desiccation hastened development of physical dormancy and improved germination. These results provide important information regarding M. parviflora seed development, which will ultimately improve weed control techniques aimed at preventing seed set and further additions to the seed bank.


2010 ◽  
Vol 74 (3-4) ◽  
pp. 205-213 ◽  
Author(s):  
Jitka Prokopová ◽  
Barbora Mieslerová ◽  
Vladimíra Hlaváčková ◽  
Jan Hlavinka ◽  
Aleš Lebeda ◽  
...  

2017 ◽  
Vol 67 (1) ◽  
pp. 125-135 ◽  
Author(s):  
Nouf M. Al-Rasheed ◽  
Laila Fadda ◽  
Hala A. Attia ◽  
Iman A. Sharaf ◽  
Azza M. Mohamed ◽  
...  

AbstractThe study aims to compare, through histological and biochemical studies, the effects of quercetin, melatonin and their combination in regulation of immuno-inflammatory mediators and heat shock protein expressions in sodium nitrite induced hypoxia in rat lungs. The results revealed that NaNO2injection caused a significant decrease in Hb in rats, while serum levels of TNF-α, IL-6 and CRP, VEGF and HSP70 were elevated compared to the control group. Administration of melatonin, quercetin or their combination before NaNO2injection markedly reduced these parameters. Histopathological examination of the lung tissue supported these biochemical findings. The study suggests that melatonin and/or quercetin are responsible for lung tissue protection in hypoxia by downregulation of immuno-inflammatory mediators and heat shock protein expressions. Pre-treatment of hypoxic animals with a combination of melatonin and quercetin was effective in modulating most of the studied parameters to near-normal levels.


2009 ◽  
Vol 19 (1) ◽  
pp. 3-13 ◽  
Author(s):  
K.M.G. Gehan Jayasuriya ◽  
Jerry M. Baskin ◽  
Carol C. Baskin

AbstractCycling of physically dormant (PY) seeds between states insensitive and sensitive to dormancy-breaking factors in the environment has recently been demonstrated inFabaceaeandConvolvulaceae, and it may be a common phenomenon in seeds with water-impermeable seed coats. In contrast to seeds of many species with physiological dormancy (PD), those with PY cannot cycle between dormancy and non-dormancy (ND). In this paper, we evaluate the role of sensitivity cycling in controlling the timing of germination of seeds with PY in nature, and show that sensitivity cycling in seeds with PY serves the same ecological role as dormancy cycling in seeds with PD. Thus, sensitivity cycling in seeds with PY ensures that germination in nature occurs only at (a) time(s) of the year when environmental conditions for growth are, and are likely to remain, suitable long enough for the plant to complete its life cycle or to form a perennating structure. Further, we describe the experimental procedures necessary to determine whether sensitivity cycling is occurring, and discuss briefly the possible relevance of sensitivity cycling to dormancy classification.


Plants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 63 ◽  
Author(s):  
Luís Silva Dias ◽  
Isabel Pires Pereira ◽  
Alexandra Soveral Dias

Seeds of Cistus ladanifer experience bursts of germination following fires. The effects of heat shock from 10 °C to 150 °C on seed germination were investigated by final germination plus the number of days required for germination to start and finish, and symmetry of cumulative germination. The occurrence of physical dormancy in C. ladanifer seeds was investigated by a variety of methods, including imbibition, scanning electron microscopy (SEM) and light microscopy, and use of dyes. The significance of responses of C. ladanifer seeds to fires was investigated essentially by abstracting existing literature and by using fire effects models and simulations. Parameters of germination were variously affected by heat treatments—positively in the range 80–100 °C, negatively above 130 °C. Non-dormancy was consistently found in about 30% of seeds but no evidence was obtained to support the existence of physical dormancy in the dormant fraction of C. ladanifer seeds. Two complementary processes seem to be in place in seeds response to fire. A direct fire-driven increase in germination of virtually all seeds in response to the appropriate heat load produced by fire or, in the absence of such heat loads, the germination of the non-dormant fraction provided that above-ground vegetation burns.


2020 ◽  
Vol 11 ◽  
Author(s):  
Marcilio Zanetti ◽  
Roberta L. C. Dayrell ◽  
Mariana V. Wardil ◽  
Alexandre Damasceno ◽  
Tais Fernandes ◽  
...  

Cangas (ironstone outcrops) host a specialized flora, characterized by high degree of edaphic endemism and an apparent lack of natural history knowledge of its flora. Due to intense pressure from iron ore mining this ecosystem is under threat and in need of restoration. We studied seed functional traits that are relevant for restoration, translocation and ex situ conservation in 48 species from cangas in eastern Amazon. Were determined the thermal niche breadth, classified seed dormancy and determined methods to overcome it, determined the effect of seed storage on germination, tested the association between germination traits and functional groups, and tested whether seed traits are phylogenetically conserved. We found a broad interspecific variation in most seed traits, except for seed water content. Large interspecific variation in the temperature niche breadth was found among the studied species, but only four species, showed optimum germination at high temperatures of 35–40°C, despite high temperatures under natural conditions. Only 35% of the studied species produced dormant seeds. Mechanical scarification was effective in overcoming physical dormancy and application of gibberellic acid was effective in overcoming physiological dormancy in five species. For the 29 species that seeds were stored for 24 months, 76% showed decreases in the germination percentage. The weak association between germination traits and life-history traits indicate that no particular plant functional type requires specific methods for seed-based translocations. Exceptions were the lianas which showed relatively larger seeds compared to the other growth-forms. Dormancy was the only trait strongly related to phylogeny, suggesting that phylogenetic relatedness may not be a good predictor of regeneration from seeds in cangas. Our study provides support to better manage seed sourcing, use, storage and enhancement techniques with expected reduced costs and increased seedling establishment success.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 125-138 ◽  
Author(s):  
Leonid Rasran ◽  
Cornelia Eisenmann ◽  
Regina Wagentristl ◽  
Karl-Georg Bernhardt

AbstractPlant species of the intermediate life strategy type are characteristic for species-rich grasslands, which are sensitive to changes in the level of disturbance. Germination and early establishment of seedlings is expected to be the most crucial stage, limiting the successful colonization of appropriate sites. Valeriana dioica is a typical plant of calcareous fens, which are dependent on regular suppression of strong competitors by means of moderate land use. It is endangered in many parts of Central Europe, including Lower Austria. We studied the effects of light, temperature and pre-treatment (cold stratification) on the germination success of V. dioica seeds and the role of litter produced by different competitors on the early establishment of seedlings. We tested seeds from five populations differing in the level of competition for light and considered also the morphological variability of propagules and maternal plants. We found that V. dioica is able to germinate without light. It showed high germination percentages both under high summer temperatures independent of cold stratification and at low temperatures, but only after the stratification. Litter produced by dicotyledonous forbs was less hampering for the seedlings than that of small sedges or grasses. Valeriana dioica possesses a broad regeneration niche and is able to use gaps for germination and establishment both in spring and in summer. It reproduces successfully in herb-dominated fen meadow vegetation but disappears from reed communities. This study demonstrates the significant plasticity of the regeneration niche for a species with an intermediate life strategy and also stresses the importance of gaps for its reproduction.


Sign in / Sign up

Export Citation Format

Share Document