scholarly journals Large N behaviour of the two-dimensional Yang–Mills partition function

Author(s):  
Thibaut Lemoine

Abstract We compute the large N limit of the partition function of the Euclidean Yang–Mills measure on orientable compact surfaces with genus $g\geqslant 1$ and non-orientable compact surfaces with genus $g\geqslant 2$ , with structure group the unitary group ${\mathrm U}(N)$ or special unitary group ${\mathrm{SU}}(N)$ . Our proofs are based on asymptotic representation theory: more specifically, we control the dimension and Casimir number of irreducible representations of ${\mathrm U}(N)$ and ${\mathrm{SU}}(N)$ when N tends to infinity. Our main technical tool, involving ‘almost flat’ Young diagram, makes rigorous the arguments used by Gross and Taylor (1993, Nuclear Phys. B400(1–3) 181–208) in the setting of QCD, and in some cases, we recover formulae given by Douglas (1995, Quantum Field Theory and String Theory (Cargèse, 1993), Vol. 328 of NATO Advanced Science Institutes Series B: Physics, Plenum, New York, pp. 119–135) and Rusakov (1993, Phys. Lett. B303(1) 95–98).

2001 ◽  
Vol 16 (06) ◽  
pp. 1161-1171
Author(s):  
M. ALIMOHAMMADI ◽  
KH. SAAIDI

By generalizing the auxiliary field term in the Lagrangian of simplicial chiral models on a (d-1)-dimensional simplex, the generalized simplicial chiral models has been introduced in Ref. 1. These models can be solved analytically only in d=0 and d=2 cases at large-N limit. In the d=0 case, we calculate the eigenvalue density function in strong regime and show that the partition function computed from this density function is consistent with one calculated by path integration directly. In the d=2 case, it is shown that all V= Tr (AA†)n models have a third order phase transition, the same as the two-dimensional Yang–Mills theory.


1976 ◽  
Vol 15 (1) ◽  
pp. 1-12 ◽  
Author(s):  
A.L. Carey

In the last three years a number of people have investigated the orthogonality relations for square integrable representations of non-unimodular groups, extending the known results for the unimodular case. The results are stated in the language of left (or generalized) Hilbert algebras. This paper is devoted to proving the orthogonality relations without recourse to left Hilbert algebra techniques. Our main technical tool is to realise the square integrable representation in question in a reproducing kernel Hilbert space.


2001 ◽  
Vol 16 (16) ◽  
pp. 2747-2769 ◽  
Author(s):  
EDWARD WITTEN

The correspondence between supergravity (and string theory) on AdS space and boundary conformal field theory relates the thermodynamics of [Formula: see text] super-Yang–Mills theory in four dimensions to the thermodynamics of Schwarzschild black holes in anti-de Sitter space. In this description, quantum phenomena such as the spontaneous breaking of the center of the gauge group, magnetic confinement and the mass gap are coded in classical geometry. The correspondence makes it manifest that the entropy of a very large AdS Schwarzschild black hole must scale "holographically" with the volume of its horizon. By similar methods, one can also make a speculative proposal for the description of large N gauge theories in four dimensions without supersymmetry.


2021 ◽  
Author(s):  
◽  
Jack Holligan

Yang-Mills theories based on the symplectic groups – denoted by Sp(2N) – are inter-esting for both theoretical and phenomenological reasons. Sp(2N) theories with two fundamental Dirac fermions give rise to pseudo-Nambu-Goldstone bosons which can be interpreted as a composite Higgs particle. This framework can describe the existing Higgs boson without the need for unnatural fine-tuning. This justifies a programme of wider investigations of Sp(2N) gauge theories aimed at understanding their general behaviour. In this work, we study the glueball mass spectrum for Sp(2N) Yang-Mills theories using the variational method applied to Monte-Carlo generated gauge config-urations. This is carried out both for finite N and in the limit N → ∞. The results are compared to existing results for SU(N) Yang-Mills theories, again, for finite- and large-N. Our glueball analysis is then used to investigate some conjectures related to the behaviour of the spectrum in Yang-Mills theories based on a generic non-Abeliangauge group G. We also find numerical evidence that Sp(2N) groups confine both for finite and large N. As well as studying the glueball spectrum, we examine the quenched-meson spectrum for fermions in the fundamental, antisymmetric and sym-metric representations for N = 2 and N = 3. This study enables us to provide a first account of how the related observables vary with N. The investigations presented in this work contribute to our understanding of the non-perturbative dynamics of Sp(2N) gauge theories in connection with Higgs compositeness and, more in general, with fun-damental open problems in non-Abelian gauge theories such as confinement and global symmetry breaking.


2019 ◽  
Vol 155 (5) ◽  
pp. 953-972 ◽  
Author(s):  
Johannes Nicaise ◽  
Chenyang Xu ◽  
Tony Yue Yu

We construct non-archimedean SYZ (Strominger–Yau–Zaslow) fibrations for maximally degenerate Calabi–Yau varieties, and we show that they are affinoid torus fibrations away from a codimension-two subset of the base. This confirms a prediction by Kontsevich and Soibelman. We also give an explicit description of the induced integral affine structure on the base of the SYZ fibration. Our main technical tool is a study of the structure of minimal dlt (divisorially log terminal) models along one-dimensional strata.


2019 ◽  
Vol 29 (05) ◽  
pp. 803-825 ◽  
Author(s):  
Eric Edo ◽  
Drew Lewis

A polynomial automorphism of [Formula: see text] over a field of characteristic zero is called co-tame if, together with the affine subgroup, it generates the entire tame subgroup. We prove some new classes of automorphisms of [Formula: see text], including nonaffine [Formula: see text]-triangular automorphisms, are co-tame. Of particular interest, if [Formula: see text], we show that the statement “Every [Formula: see text]-triangular automorphism is either affine or co-tame” is true if and only if [Formula: see text]; this improves upon positive results of Bodnarchuk (for [Formula: see text], in any dimension [Formula: see text]) and negative results of the authors (for [Formula: see text], [Formula: see text]). The main technical tool we introduce is a class of maps we term translation degenerate automorphisms; we show that all of these are either affine or co-tame, a result that may be of independent interest in the further study of co-tame automorphisms.


1998 ◽  
Vol 13 (26) ◽  
pp. 2085-2094 ◽  
Author(s):  
B. SATHIAPALAN

We use the matrix formalism to investigate what happens to strings above the Hagedorn temperature. We show that is not a limiting temperature but a temperature at which the continuum string picture breaks down. We study a collection of N D-0-branes arranged to form a string having N units of light-cone momentum. We find that at high temperatures the favored phase is one where the string worldsheet has disappeared and the low-energy degrees of freedom consists of N2 massless particles ("gluons"). The nature of the transition is very similar to the deconfinement transition in large-N Yang–Mills theories.


Sign in / Sign up

Export Citation Format

Share Document