Effect of medium composition on the in vitro culture of bovine pre-antral follicles: morphology and viability do not guarantee functionality

Zygote ◽  
2012 ◽  
Vol 21 (2) ◽  
pp. 125-128 ◽  
Author(s):  
Rafael Rossetto ◽  
Márcia Viviane Alves Saraiva ◽  
Regiane Rodrigues dos Santos ◽  
Cleidson Manoel Gomes da Silva ◽  
Luciana Rocha Faustino ◽  
...  

SummaryThis study investigated the effect of three different culture media (α minimum essential medium (α-MEM), McCoy or TCM199 during the in vitro culture (IVC) of bovine isolated pre-antral follicles. Pre-antral follicles greater than 150 μm in size were isolated and cultured for 0 (control), 8 or 16 days in one of the abovementioned culture media. Follicles were evaluated for survival, growth and antrum formation at days 8 and 16. The results showed that TCM199 was the most suitable medium to preserve follicular viability and ultrastructure, resulting in the highest rates of antrum formation. In conclusion, TCM199 promotes the in vitro development of isolated pre-antral follicles without hampering follicular functionality by sustaining in vitro growth and antrum formation.

2020 ◽  
Vol 9 (9) ◽  
pp. e231997031
Author(s):  
João Bosco de Oliveira Júnior ◽  
Camilla Mendes Pedroza Pessoa ◽  
Hendril da Silva Lopes ◽  
Frederico Henrique da Silva Costa ◽  
Jonny Everson Scherwinski Pereira

Dragon's blood, native species from South America, has therapeutic properties scientifically proved. This study had the objective of developing a protocol for in vitro establishment and plantlets acclimatization from zygotic embryos, since researches with species are incipient. Culture media (MS, WPM, QL and N6) were assessed, without and with activated charcoal (2 g L-1). It was observed the percentage of developed embryos from 83% to 100% and the effect of medium composition for plant height and leaf number in vitro. The plantlets were acclimatized with 100% of survival rate, and for treatments from in vitro culture only the culture medium influenced diameter and plant height. The WPM and QL formulations without activated charcoal are indicated for in vitro culture of embryos and acclimatization of Dragon blood. The suggested methodology represents an important strategy for reproduction, physiological study and preservation of species.


Agrologia ◽  
2018 ◽  
Vol 1 (1) ◽  
Author(s):  
S. Tuhuteru ◽  
Meity L Hehanussa ◽  
Simon H.T Raharjo

Dendrobium anosmum is one of natural orchids in Indonesia. Optimization of medium composition for orchid propagation through in vitro culture is necessary to enhance propagule multiplication capabilities and quality. This study was aimed to study the influence of concentration of coconut water in culture medium on in vitro growth and development of D. anosmum orchid species and to determine the optimal coconut water concentration in culture media.  The experiment were arranged in a Completely Randomized Design with four treatments and eight replications. The treatments consisted of the addition of coconut water with concentrations: 0 ml•l -1 (control), 50 ml•l-1, 100 ml•l-1 and 150 ml•l-1. The results showed that addition of coconut water in culture medium gave different effect on shoot growth and multiplication of D. anosmum orchids.  Coconut water concentration of 100 ml•l-1 was the best concentration for growth and multiplication of D. anosmum orchids, based on both shoots and roots growth, plantlet height and wet weight.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 195
Author(s):  
Alla A. Shulgina ◽  
Elena A. Kalashnikova ◽  
Ivan G. Tarakanov ◽  
Rima N. Kirakosyan ◽  
Mikhail Yu. Cherednichenko ◽  
...  

We investigated the influence of different conditions (light composition and plant growth regulators (PGRs) in culture media) on the morphophysiological parameters of Stevia rebaudiana Bertoni in vitro and in vivo. Both PGRs and the light spectra applied were found to significantly affect plant morphogenesis. During the micropropagation stage of S. rebaudiana, optimal growth, with a multiplication coefficient of 15, was obtained in an MS culture medium containing 2,4-epibrassinolide (Epin) and indole-3-acetic acid (IAA) at concentrations of 0.1 and 0.5 mg L−1, respectively. During the rooting stage, we found that the addition of 0.5 mg L−1 hydroxycinnamic acid (Zircon) to the MS medium led to an optimal root formation frequency of 85% and resulted in the formation of strong plants with well-developed leaf blades. Cultivation on media containing 0.1 mg L−1 Epin and 0.5 mg L−1 IAA and receiving coherent light irradiation on a weekly basis resulted in a 100% increase in the multiplication coefficient, better adventitious shoot growth, and a 33% increase in the number of leaves. S. rebaudiana microshoots, cultured on MS media containing 1.0 mg L−1 6-benzylaminopurine (BAP) and 0.5 mg L−1 IAA with red monochrome light treatments, increased the multiplication coefficient by 30% compared with controls (white light, media without PGRs).


2021 ◽  
Vol 2 (2) ◽  
pp. 538-553
Author(s):  
Natacha Coelho ◽  
Alexandra Filipe ◽  
Bruno Medronho ◽  
Solange Magalhães ◽  
Carla Vitorino ◽  
...  

In vitro culture is an important biotechnological tool in plant research and an appropriate culture media is a key for a successful plant development under in vitro conditions. The use of natural compounds to improve culture media has been growing and biopolymers are interesting alternatives to synthetic compounds due to their low toxicity, biodegradability, renewability, and availability. In the present study, different culture media containing one biopolymer (chitosan, gum arabic) or a biopolymer derivative [hydroxyethyl cellulose (HEC), carboxymethyl cellulose (CMC)], at 100 or 1000 mg L−1, were tested regarding their influence on the growth and physiological responses of Thymus lotocephalus in vitro culture. Cellulose-based biopolymers (HEC and CMC) and gum arabic were used for the first time in plant culture media. The results showed that CMC at 100 mg L−1 significantly improved shoot elongation while chitosan, at the highest concentration, was detrimental to T. lotocephalus. Concerning only the evaluated physiological parameters, all tested biopolymers and biopolymer derivatives are safe to plants as there was no evidence of stress-induced changes on T. lotocephalus. The rheological and microstructural features of the culture media were assessed to understand how the biopolymers and biopolymer derivatives added to the culture medium could influence shoot growth. As expected, all media presented a gel-like behaviour with minor differences in the complex viscosity at the beginning of the culture period. Most media showed increased viscosity overtime. The surface area increased with the addition of biopolymers and biopolymer derivatives to the culture media and the average pore size was considerably lower for CMC at 100 mg L−1. The smaller pores of this medium might be related to a more efficient nutrients and water uptake by T. lotocephalus shoots, leading to a significant improvement in shoot elongation. In short, this study demonstrated that the different types of biopolymers and biopolymer derivatives added to culture medium can modify their microstructure and at the right concentrations, are harmless to T. lotocephalus shoots growing in vitro, and that CMC improves shoot length.


2015 ◽  
Vol 6 (1) ◽  
Author(s):  
Zubeir M. Golamaully ◽  
Vishwakalyan Bhoyroo ◽  
Nadeem Nazurally ◽  
Vineshwar Gopal

With the ever growing population and economic needs of Mauritius, the flora of Mauritius has never been in more danger and one group of vascular plants is even more in peril; ferns.<em> Diplazium proliferum</em> is indigenous to the Mascarene region and is considered as a rare species in Mauritius. The need to develop a tested <em>in vitro</em> propagation protocol is a must to protect the biodiversity of Mauritius. This experiment was geared towards the establishment of a proper sterilization technique and the effect of 6-benzylaminopurine (BAP) and light on <em>in vitro</em> culture of this fern. Sterilization with 0.05% Mercuric chloride was effective to eliminate fungal contamination and allow germination of spores. Culture media supplemented with BAP did not significantly increase growth rate of both gametophytes and sporophytes of<em> D. proliferum</em>. Present results suggest efficient sterilization methods to be a crucial stage for successful<em> in vitro r</em>egeneration of ferns. The established protocol will be used as an optimized baseline protocol for the propagation of other indigenous ferns.


2018 ◽  
Vol 22 ◽  
pp. 216-221
Author(s):  
O. V. Bulko ◽  
L. G. Lioshina

Aim. Micropropagation of Jacob’s ladder Polemonium caeruleum L. and black salsify Scorzonera hispanica L., obtaining root culture and regenerated plants. Methods. In vitro plant cultivation, medium composition modification for micropropagation, inoculation of explants with agrobacterial strains. Results. In vitro cultures of Jacob’s ladder and black salsify have been obtained, the optimal medium composition has been determined for the effective plants multiplication, rooting and growth, root cultures and regenerated plants of studied species have been obtained. Conclusions. Obtained technology of in vitro culture establishment of P. caeruleum and S. hispanica can be used for plants microclonal propagation so as root culture and regenerated plants acquiring due to the agrobacterial transformation – for further studies of secondary metabolism of these plants. Keywords: P. caeruleum L., S. hispanica L., micropropagation, phytohormones, root culture.


Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 210 ◽  
Author(s):  
Pascual García-Pérez ◽  
Eva Lozano-Milo ◽  
Mariana Landín ◽  
Pedro Pablo Gallego

We combined machine learning and plant in vitro culture methodologies as a novel approach for unraveling the phytochemical potential of unexploited medicinal plants. In order to induce phenolic compound biosynthesis, the in vitro culture of three different species of Bryophyllum under nutritional stress was established. To optimize phenolic extraction, four solvents with different MeOH proportions were used, and total phenolic content (TPC), flavonoid content (FC) and radical-scavenging activity (RSA) were determined. All results were subjected to data modeling with the application of artificial neural networks to provide insight into the significant factors that influence such multifactorial processes. Our findings suggest that aerial parts accumulate a higher proportion of phenolic compounds and flavonoids in comparison to roots. TPC was increased under ammonium concentrations below 15 mM, and their extraction was maximum when using solvents with intermediate methanol proportions (55–85%). The same behavior was reported for RSA, and, conversely, FC was independent of culture media composition, and their extraction was enhanced using solvents with high methanol proportions (>85%). These findings confer a wide perspective about the relationship between abiotic stress and secondary metabolism and could serve as the starting point for the optimization of bioactive compound production at a biotechnological scale.


2019 ◽  
Vol 86 (12) ◽  
pp. 1874-1886
Author(s):  
Francisco Taiã G. Bezerra ◽  
Francisco Edilcarlos O. Lima ◽  
Laís Rayani F. M. Paulino ◽  
Bianca R. Silva ◽  
Anderson W. B. Silva ◽  
...  

2017 ◽  
Vol 95 (suppl_4) ◽  
pp. 231-231
Author(s):  
N. C. Negota ◽  
L. P. Nethenzheni ◽  
N. R. Serota

2017 ◽  
Vol 29 (1) ◽  
pp. 188
Author(s):  
N. C. Negota ◽  
L. P. Nethenzheni ◽  
M. L. Mphaphathi ◽  
D. M. Barry ◽  
T. L. Nedambale

The in vitro culture media and assisted hatching techniques remain challenging obstacles to be utilised widely. Mechanical, chemical, enzymatic thinning, and laser-assisted techniques have been used previously but information is still lacking on its application in livestock. The aim of this study was to compare the effect of 2 in vitro culture media (Hamster F10 and TMC-199) and 4 (mechanical, chemical, enzymatic, and laser) assisted hatching techniques on blastocyst formation and hatching rate using murine embryos as a model. The C57/b and Balb/c breeds were raised until they reached maturity and bred naturally to produce F1 generation. The light in the breeding house was controlled at 14 h light and 10 h dark. Feed and water were provided ad libitum for the mice. Superovulation of females were stimulated using equine chorionic gonadotropin and human chorionic gonadotropin. The F1 generation was used for the collection of the 400 blastocysts and randomly allocated into 4 assisted hatching techniques. Blastocysts were paired into a group of 10 and replicated 4 times for each assisted hatching technique. The general linear model of SAS version 9.4 (SAS Institute Inc., Cary, NC, USA) was used to analyse the data. Assisted hatching techniques of laser, mechanical, enzymatic, and chemical yielded 46.9 ± 37.1, 51.1 ± 40.2, 39.1 ± 35.8, and 33.3 ± 4.5%, respectively, under in vitro culture of Hamster F10. The TCM-199, laser, mechanical, enzymatic, and chemical assisted hatching techniques yielded 56.3 ± 43.3, 52.6 ± 35.5, 49.2 ± 37.5, and 33.9 ± 35.5%, respectively, with a significant difference. There was no significant difference observed in assisted hatching techniques and Hamster F10 culture medium. However, the hatching rate of embryos for all techniques was higher when in vitro cultured in TCM than cultured in Hamster F10. Hatching rate of blastocysts increased from chemical, enzymatic, mechanical, and laser with response to Hamster F10 and TCM; thus, laser is a suitable assisted hatching technique with TCM-199.


Sign in / Sign up

Export Citation Format

Share Document