Porcine oocyte preincubation in oviductal fluid flush before in vitro fertilization in the presence of oviductal epithelial cells improves monospermic zygote production

Zygote ◽  
2021 ◽  
pp. 1-8
Author(s):  
Ribrio Ivan Tavares Pereira Batista ◽  
Lucia N. Moro ◽  
Emilie Corbin ◽  
Carmen Alminana ◽  
Joanna Maria Gonçalves Souza-Fabjan ◽  
...  

Summary The present study was designed to evaluate the effect of the combination of oviduct fluid flush (OFF) and oviduct epithelial cells (OEC) in modulating the incidence of polyspermy in pigs. Therefore, for in vitro fertilization (IVF), oocyte and sperm were co-cultured in Tris-buffered medium (TBM) either supplemented with 10% OFF (OFFD group), or in the presence of a bovine OEC monolayer (OEC group), or the oocytes were exposed to OFF for 30 min before IVF (OFFB group), or in the presence of an OEC monolayer (OFFB + OEC group). Regardless of sperm concentration used (0.5, 1.5, and 4.5 × 105 cells/ml), supplementation of IVF medium with 10% OFF led to an increased (P < 0.05) monospermy rate, without alteration (P > 0.05) of the penetration rate in comparison with the control and OEC groups. When the IVF medium was supplemented with heparin, an overall increase (P < 0.05) of the final output of the IVF system in terms of zygotes with two pronuclei (2PN) was observed in the OFFD group, compared with the control and OEC groups, at a sperm concentration of 4.5 × 105 cells/ml. At this concentration, OFFB improved the monospermy rate but decreased the penetration rate, resulting in low efficiency of monospermic zygotes production. Despite this, no major effect was observed in the developmental competence of the presumed zygotes up to the blastocyst stage. The combination of OFFB with OEC improved the penetration rate, while maintaining the high monospermic rate induced by OFFB. In conclusion, the combination of treatment of oocytes by diluted OFF 30 min before IVF, followed by IVF in the presence of OEC, improved monospermic zygote production without reducing the penetration rate, when the IVF medium was supplemented with heparin.

2009 ◽  
Vol 21 (1) ◽  
pp. 218
Author(s):  
Y. Akaki ◽  
K. Yoshioka ◽  
H. Funahashi

Exposure of porcine oocyte–cumulus complexes (OCC) to gonadotropins induces meiotic resumption, but the details of this mechanism are still unknown. The present study was undertaken to examine combinational effects of EGF-like factors and dibutyryl cyclic AMP (dbcAMP) in a chemically defined medium on in vitro maturation (IVM) of porcine oocytes. The OCC were aspirated from 3- to 6-mm-diameter follicles of prepuberal ovaries and used in the current study. The basic culture medium was a chemically defined medium, Porcine Oocyte Medium (POM; Research Institute for the Functional Peptides, Yamagata, Japan). In the first experiment, various concentrations (0, 10, and 1000 ng mL–1) of EGF-like factors (EGF, amphiregulin, and betacellulin) were added to POM during an entire IVM period (44 h). In the second experiment, to determine the additive effect of EGF-like factors, each EGF-like factor with an effective concentration was combined with the others. In the last experiment, to examine the combined effect with dbcAMP, OCC were exposed to EGF (10 ng mL–1), amphiregulin (1000 ng mL–1), and dbcAMP (1 mm) during the first 20 h of IVM and then the culture was continued in the absence of EGF-like factors and dbcAMP. After culture, in all experiments, meiotic resumption and the progress of oocytes were examined after denuding, fixing, and staining. Statistical analyses was performed by ANOVA with a Bonferroni-Dunn post hoc test (significance, P < 0.05). In the first experiment, all treatments without supplementation with 10 ng mL–1 amphiregulin increased the incidence of oocytes maturing to the MII phase, as compared with controls (29.1 to 39.3% v. 11.1%, P < 0.05). In the second experiment, combinations with 2 kinds of EGF-like factor slightly (but not significantly) improved the percentage of oocytes at the MII stage (37.7 to 47.4%). In the last experiment, supplementation with 1 mm dbcAMP during the first 20 h of IVM, regardless of the presence of EGF-like factors, significantly increased the incidence of MII oocytes as compared with controls, whereas the incidence was the highest when 1 mm dbcAMP, 10 ng mL–1 EGF, and 1000 ng mL–1 amphiregulin were supplemented (75.5%). When those oocytes were cultured in a chemically defined medium after in vitro fertilization, the developmental competence of oocytes to the blastocyst stage (25.0%) was not different from oocytes matured in the presence of gonadotropins and dbcAMP during the first 20 h of IVM (17.3%). These observations indicate that supplementation of a chemically defined maturation medium with EGF-like factors and dbcAMP during the first 20 h of IVM can support the meiotic progress and developmental competence of porcine oocytes well. Currently, we are examining the developmental competence of those oocytes after embryo transfer. The results will be presented at the meeting. This study was supported by MAFF AgriBio1605.


Zygote ◽  
2010 ◽  
Vol 18 (4) ◽  
pp. 345-355 ◽  
Author(s):  
M.J. Palomo ◽  
T. Mogas ◽  
D. Izquierdo ◽  
M.T. Paramio

SummaryThe aims of the present study were: (1) to evaluate the influence of sperm concentration (ranging from 0.5 × 106 to 4 × 106 spermatozoa/ml) and length of the gamete co-incubation time (2, 4, 6, 8, 10, 12, 16, 20, 24 or 28 h) on in vitro fertilization (IVF), assessing the sperm penetration rate; (2) to investigate the kinetics of different semen parameters as motility, viability and acrosome status during the co-culture period; and (3) to analyse the effect of the presence of cumulus–oocytes complexes (COCs) on these parameters. To achieve these objectives, several experiments were carried out using in vitro matured oocytes from prepubertal goats. The main findings of this work are that: (1) in our conditions, the optimum sperm concentration is 4 × 106 sperm/ml, as this sperm:oocyte ratio (approximately 28,000) allowed us to obtain the highest penetration rate, without increasing polyspermy incidence; (2) the highest percentage of viable acrosome-reacted spermatozoa is observed between 8–12 h of gamete co-culture, while the penetration rate is maximum at 12 h of co-incubation; and (3) the presence of COCs seems to favour the acrosome reaction of free spermatozoa on IVF medium, but not significantly. In conclusion, we suggest that a gamete co-incubation for 12–14 h, with a concentration of 4 × 106 sperm/ml, would be sufficient to obtain the highest rate of penetration, reducing the exposure of oocytes to high levels of reactive oxygen species produced by spermatozoa, especially when a high sperm concentration is used to increase the caprine IVF outcome.


2006 ◽  
Vol 18 (2) ◽  
pp. 216 ◽  
Author(s):  
F. Berlinguer ◽  
S. Succu ◽  
A. del Olmo ◽  
R. Gonzalez ◽  
J. J. Garde ◽  
...  

The recovery of immature oocytes followed by in vitro maturation, fertilization and culture (IVMFC) allows the rescue of biological material of great genetic value for the establishment of genetic resource banks. Studies have been carried out on endangered Mohor gazelle sperm cryopreservation (Garde et al. 2003 Biol. Reprod. 69, 602-611), but there are no studies on oocytes in this species. The purpose of this work was to develop a protocol for ovarian stimulation for the recovery of oocytes and subsequent IVMFC. The study was conducted using six reproductively mature female Mohor gazelles from the breeding herd at the Estacion Experimental de Zonas Aridas. Animals were synchronized by insertion of controlled progesterone internal drug release (CIDR) devices for 14 days and removal of the devices on the day of ovum pickup (OPU). Follicular growth was stimulated by a total of 5.28 mg of oFSH (Ovagen, ICP, Auckland, New Zealand) given in four equal doses every 12 h. OPUs were performed (Berlinguer et al. 2004 Theriogenology 61, 1477-1486) on Day 15 from the beginning of treatment, and follicles were aspirated with a syringe and a 25G needle using TCM199-HEPES with 50 �g/mL streptomycin, 50 IU/mL penicillin, 0.1% polyvinyl alcohol, and 15 IU/mL heparin. Degenerated oocytes and those with expanded cumulus were removed. Oocytes were cultured in TCM-199 plus 10% FCS, 10 �g/mL ovine FSH/LH, 1 �g/mL estradiol, and 0.1 mg/mL glutamine at 38.5�C under 5% CO2/air and maximum humidity. Spermatozoa were cryopreserved in Tes-Tris with 5% egg yolk and 6% glycerol, and selected by swim-up in SOF medium. After 24 h sperm-oocyte coincubation (sperm concentration: 1 � 106/mL) in SOF with 2% estrus sheep serum under 5% CO2 5% O2 90% N2, presumptive zygotes were transferred to SOF with 0.4% BSA and amino acids under 5% CO2, 5% O2 90% N2 and cultured for 4 days. Oocytes and embryos were stained with Hoechst 33342 and propidium iodide (1 �g/mL each) and visualized under a fluorescence microscope. A total of 35 oocytes were recovered from 56 punctured follicles (62.5%). This recovery rate was similar to those in wildlife in earlier reports, but more studies are needed to improve hormonal stimulation and oocyte harvesting. Out of 29 cumulus-oocyte complexes matured in vitro, 3.5% were found at GV and 6.9% at MI; 20.7% were degenerated and 68.9% had advanced to MII. Fertilization and cleavage rates were 40% and 30%, respectively, of matured oocytes. Out of eight zygotes, six showed cleavage (ranging from 2 to 8 cells). None of the developing embryos progressed to the blastocyst stage, suggesting the existence of a developmental block and the need to improve culture conditions. Although more trials will help to improve IVMFC, this study demonstrates for the first time the feasibility of in vitro fertilization with frozen-thawed semen of in vitro matured oocytes collected by OPU from FSH-stimulated endangered gazelles. This work was supported by the Spanish Ministry of Education and Science (REN 2003-11587) and Acciones Integradas (HI20030336).


2002 ◽  
Vol 45 (6) ◽  
pp. 547-556
Author(s):  
N. R. Mtango ◽  
M. D. Varisanga ◽  
D. Y. Juan ◽  
P. Wongrisekeao ◽  
T. Suzuki

Abstract. This study was designed 1) to determine the effectiveness of two in vitro maturation (IVM) media (tissue culture medium [TCM] and modified synthetic oviduct fluid supplemented with amino acids [mSOFaa]), 2) to compare the effects of two in vitro fertilization (IVF) media (modified Tris-buffered medium [mTBM] and mSOFaa) on the developmental competence of pig oocytes, and 3) to test the activation ability of IVM pig oocytes matured in TCM or mSOFaa, electroactivated and cultured in mSOFaa. The nuclear maturation rates were similar between IVM media (91.0 % vs. 89.0 %). A similar result was obtained when the activation rates were 54.2 % in TCM and 56.0 % in mSOFaa, and the blastocyst rates were 7.9 % and 6.1 %, respectively. There was no significant difference between mSOFaa and mTBM in the percentage of embryos with two pronuclei 33.2 % vs. 13.8 % or polypronuclei 5.3 % vs. 13.4 %. The cleavage rate was the same in both media. The medium mSOFaa gave a significantly higher (P< 0.05) blastocyst rate than mTBM (12.7 % vs. 3.9 %). We concluded that mSOFaa can enhance in vitro maturation, fertilization and culture of pig oocytes.


2003 ◽  
Vol 15 (3) ◽  
pp. 167 ◽  
Author(s):  
Hiroaki Funahashi

Although techniques for in vitro production of porcine embryos have proceeded very rapidly during the past decade, polyspermic penetration still remains a persistent obstacle to porcine in vitro fertilization (IVF) systems. Considerable research on in vitro polyspermic penetration in porcine in vitro-matured (IVM) oocytes has been undertaken to try to solve this problem. In the current paper, recent advancements in overcoming the problems of polyspermy in porcine IVF systems are reviewed. Partial induction of the acrosome reaction of boar spermatozoa in IVF media that contain caffeine is likely to be one of the major causes of polyspermy. A reduction in the number of incompletely acrosome-reacted spermatozoa, which can bind tightly to the zona pellucida and mask free sperm receptors of the zona pellucida, could reduce the incidence of polyspermic penetration; however, morphological differences in the reaction of the zona pellucida have been observed between IVM and ovulated oocytes, which suggests that altered zona morphology may be another cause of polyspermic penetration. It has been shown that the developmental ability of polyspermic porcine embryos to the blastocyst stage is similar to that of normal embryos but that developmental competence to term is much lower. To overcome the current problems of polyspermy, it is suggested that future efforts should be focused on controlling boar sperm function and/or sperm–zona binding to achieve the final maturation associated with normal zona modifications of porcine oocytes at fertilization.


2002 ◽  
Vol 14 (6) ◽  
pp. 339 ◽  
Author(s):  
D. Rieger ◽  
L. T. McGowan ◽  
S. F. Cox ◽  
P. A. Pugh ◽  
J. G. Thompson

In cattle embryos, the proportion of ATP produced by glycolysis increases following the major activation of the embryonic genome, and development to the blastocyst stage is improved in the presence of 10 µM 2,4-dinitrophenol (DNP), an uncoupler of oxidative phosphorylation, from Day 5 to Day 7 of culture. In Experiment 1 of the present study, culture of cattle embryos in the presence of 10 µM DNP from Day 5 to Day 7 stimulated development to the blastocyst stage, but had no significant effects on oxygen, pyruvate or glucose uptake, or on lactate production. In Experiment 2, culture of cattle embryos in the presence of 10 µM DNP from Day 5 to Day 7, stimulated the metabolism of [2-14C]pyruvate (a measure of Krebs cycle activity) on all of Days 5, 6 and 7, and stimulated metabolism of [5-3H]glucose (a measure of glycolysis) on Day 7 only. The results show that 10 µM DNP stimulates oxidative and glycolytic metabolism in Day-5 to Day-7 cattle embryos, but this does not fully explain the observed increase in developmental competence. We propose that partial inhibition or uncoupling of oxidative phosphorylation may reduce the level of intracellular reactive oxygen species production, thereby facilitating development.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1101
Author(s):  
Daniela Bebbere ◽  
Stefano Mario Nieddu ◽  
Federica Ariu ◽  
Davide Piras ◽  
Sergio Ledda

In vitro oocyte maturation (IVM) is a well-established technique. Despite the high IVM rates obtained in most mammalian species, the developmental competence of IVM oocytes is suboptimal. The aim of this work was to evaluate the potential beneficial effects of a liquid marble microbioreactor (LM) as a 3D culture system to mature in vitro prepubertal ovine oocytes, as models of oocytes with intrinsic low competence. Cumulus–oocyte complexes of prepubertal sheep ovaries were in vitro matured in a LM system with hydrophobic fumed-silica-nanoparticles (LM group) or in standard conditions (4W control group). We evaluated: (a) maturation and (b) developmental rates following in vitro fertilization (IVF) and embryo culture; (c) expression of a panel of genes. LM and 4W groups showed similar IVM and IVF rates, while in vitro development to blastocyst stage approached significance (4W: 14.1% vs. LM: 28.3%; p = 0.066). The expression of GDF9, of enzymes involved in DNA methylation reprogramming and of the subcortical maternal complex was affected by the IVM system, while no difference was observed in terms of cell-stress-response. LM microbioreactors provide a suitable microenvironment to induce prepubertal sheep oocyte IVM and should be considered to enhance the developmental competence of oocytes with reduced potential also in other species, including humans.


2011 ◽  
Vol 23 (1) ◽  
pp. 167
Author(s):  
M. De Blasi ◽  
M. Rubessa ◽  
L. Boccia ◽  
S. Di Francesco ◽  
M. V. Suárez Novoa ◽  
...  

Removal of cumulus cells is necessary for several technologies such as vitrification, intracytoplasmic sperm injection, and nuclear transfer. However, it is known that the presence of cumulus cells during IVF of buffalo oocytes is fundamental for fertilization and embryo development (Gasparrini et al. 2007 Anim. Reprod. Sci. 98, 335–342; Nandi et al. 1998 Theriogenology 50, 1251–1262). The aim of this work was to evaluate whether co-culture with intact bovine cumulus–oocyte complexes (COC) during IVF would restore the developmental competence of denuded buffalo oocytes. Due to the scarce availability of buffalo ovaries, the somatic support was provided by bovine cumulus cells. Abattoir-derived COC were matured in vitro according to our standard procedures (Gasparrini et al. 2006, Theriogenology, 65, 275–287) and randomly distributed in 3 fertilization groups: 1) a control group of COC (n = 122), 2) a negative control of denuded oocytes (DO; n = 119), and 3) DO co-cultured with in vitro matured bovine COC (DO+COC; n = 103) in a 1:1 ratio (3 bovine COC + 3 denuded buffalo oocytes/50 μL drop). Fertilization was carried out with frozen–thawed spermatozoa from a tested bull in TALP medium supplemented by 0.2 mM penicillamine, 0.1 mM hypotaurine, and 0.01 mM heparin at 38.5°C under a controlled gas atmosphere of 5% CO2 in humidified air. After fertilization the zygotes were cultured in SOF medium including essential and nonessential amino acids and 8 mg mL–1 BSA, at 38.5°C under humidified 5% CO2, 7% O2, and 88% N2, up to the blastocyst stage. On Day 5 and on Day 7 (Day 0 = IVF) cleavage and blastocyst rates were respectively recorded. Data were analysed by chi-square test. As expected, cleavage and blastocyst rates were lower (P < 0.01) in DO (36.1 and 9.2%, respectively) compared with the control (67.2 and 27.1%, respectively). However, co-culture during IVF (DO+COC) significantly increased (P < 0.01) both parameters compared with DO, giving cleavage (70.9%) and blastocyst (27.2%) rates similar to the control. The results of this study demonstrated that co-culture with bovine intact COC during IVF of buffalo denuded oocytes completely restores their fertilizing capability and blastocyst developmental competence. We conclude that this may be a suitable strategy for preserving the developmental competence of oocytes devolved to technologies, such as oocyte vitrification, that require cumulus removal.


2016 ◽  
Vol 36 (suppl 1) ◽  
pp. 58-64
Author(s):  
Guilherme Oberlender ◽  
Salvador Ruiz López ◽  
Aitor D. De Ondiz Sánchez ◽  
Luis A. Vieira ◽  
Mariane Barreto Pereira ◽  
...  

Abstract: The aim was to study the effects of different gamete coincubation times on porcine in vitro fertilization (IVF), and to verify whether efficiency could be improved by reducing oocyte exposure time to spermatozoa during IVF. In groups of 50, a total of 508 immature cumulus-oocyte complexes (COCs) were matured in NCSU-37 medium. The COCs were cultured for 44 hours and then inseminated with in natura semen (2,000 spermatozoa/oocyte). The sperm and oocytes were coincubated according to the following treatments (T): T1 = oocytes exposed to spermatozoa for one hour (173 oocytes), T2 = oocytes exposed to spermatozoa for two hours (170 oocytes), and T3 = oocytes exposed to spermatozoa for three hours (165 oocytes). After these coincubation periods, the oocytes were washed in fertilization medium (TALP medium) to remove spermatozoa not bound to the zona pellucida and cultured in another similar medium (containing no sperm). Eighteen to twenty hours after fertilization, the putative zygotes were stained in Hoechst-33342 to evaluate the IVF results. The penetration rate was higher (P<0.05) after two hours of coincubation time than it was for one or three hours. Furthermore, 68.60% of the ova coincubated with the spermatozoa for two hours were monospermic. The oocytes exposed to spermatozoa for one hour (T1) presented a higher (P<0.01) rate of polyspermy than those in T2 and T3. Fertilization performance (%) did not differ (P>0.05) between oocytes exposed to spermatozoa for one (T1) and three hours (T3). However, optimum (P=0.048) results were obtained after two hours of coincubation, when the rate of fertilization performance was 50.16±8.52%. The number of penetrated sperm per oocyte, as well as male pronucleus formation, did not differ (P>0.05) between the treatments evaluated. Under these assay conditions, especially in relation to the sperm concentration used, gamete coincubation for a period of two hours appears to be optimal for monospermy and fertilization performance. Thus, it is the optimal time period for obtaining a large number of pig embryos capable of normal development.


2005 ◽  
Vol 17 (2) ◽  
pp. 177
Author(s):  
N.R. Mtango ◽  
T. Kono

Nuclear reprogramming is characterized by functional modification(s) of the transferred nucleus that allows it to direct normal embryo development with the potential to grow to term. The aim of our study was to investigate the process of nuclear changes in reconstructed and activated embryos as well as their developmental competence. All chemicals used were from Sigma Chemicals (St. Louis, MO, USA). Cumulus-oocyte complexes were aspirated from slaughterhouse ovaries of prepurbetal gilts and matured for 42 h in vitro. The cumulus cells were removed by adding in 1 mg mL −1 hyaluronidase in TLP-HEPES. For the NT experiment, oocytes with first polar body were cultured in 0.4 μg mL−1 demecolcine for 1 h. A protruding membrane was removed by micromanipulator and a single donor nucleus from fetal fibroblast was injected subzonally. Fusion was conducted immediately after transfer in 0.3 M mannitol, 0.5 mM HEPES, 0.1% PVA, and 0.1 mM MgCl2 in a fusion chamber with parallel electrodes set 1 mm apart using a singe DC pulse of 125 V mm−1 for 80 s. Activation was done 2–4 h after fusion in the same medium as fusion but with 0.1 mM CaCl2 added; embryos were cultured in 5 μg mL−1 cytochalasin B and 10 μg mL−1 cyclohexamide for 6 h. The embryos were cultured in glucose-free NCSU-37 containing 4 mg mL−1 BSA as basic medium supplemented with 0.17 mM sodium pyruvate and 2.73 mM sodium lactate from Days 0 to 2, and then in basic medium with 5.55 mM D-glucose from Days 2–6 (Kikuchi K et al. 2002 Biol. Reprod. 66, 1033–1041). Non-manipulated oocytes (PA) were electrically activated as stated above. For observing the changes of donor cells, some reconstructed oocytes were fixed 2 h after fusion, prior to activation, and some 12 h after activation in acetic acid:ethanol (1:3) and stained in 1% orcein. The activated oocytes were fixed at 12 h and stained as stated above. There were 47.5% (38/80) of reconstructed oocytes with premature chromosome condensation (PCC), and 23.7% (19/80) with nuclear swelling two hours after fusion. Pronuclear like formation 12 h after activation was 45% (27/60) and 83.3% (50/60) in NT and PA, respectively. The blastocyst rate was 8.3% (5/60) and 46% (69/150) for NT and PA, respectively. The results suggest that porcine oocyte cytoplasm can successfully reprogram somatic cell nuclei and support the development of NT embryos to the blastocyst stage.


Sign in / Sign up

Export Citation Format

Share Document