Social inappropriateness in neurodegenerative disorders

2017 ◽  
Vol 30 (2) ◽  
pp. 197-207 ◽  
Author(s):  
Philippe Desmarais ◽  
Krista L. Lanctôt ◽  
Mario Masellis ◽  
Sandra E. Black ◽  
Nathan Herrmann

ABSTRACTBackground:New onset of mood and behavioral changes in middle-aged patients are frequently the first manifestations of an unrecognized neurocognitive disorder. Impairment of social cognition, the cognitive ability to process social information coming from others, such as emotions, to attribute mental states to others, and to respond appropriately to them, is often at the origin of behavioral manifestations in neurodegenerative disorders.Methods:This paper reviews the current literature on social cognition impairment in neurocognitive disorders, particularly in prodromal stages of behavioral-variant frontotemporal dementia (bvFTD), Alzheimer's disease (AD), idiopathic Parkinson's disease (IPD), and Lewy body dementia (LBD). The concepts of social cognition will be reviewed, including its impairment and neural basis, its clinical assessment, and the different therapeutic interventions available clinically.Results:Socially inappropriate behaviors, such as loss of empathy, inappropriateness of affect, and disinhibition are frequently reported in prodromal bvFTD and in prodromal AD. Lack of self-control, reduced perception of social cues, such as recognition of facial emotions and sarcastic speech, and impaired Theory of Mind all contribute to the neuropsychiatric symptoms and are secondary to neurodegeneration in specific brain regions. In contrasts to bvFTD and AD, deficits in social cognition in IPD occur later in the course of the disease and are often multifactorial in origin.Conclusions:Through various manifestations, social inappropriateness is frequently the first clinical sign of a neurodegenerative process, especially in AD and bvFTD, years before noticeable impairment on classical neuropsychological assessment and brain atrophy on imaging.

Author(s):  
Jagan A. Pillai ◽  
James B. Leverenz

This chapter discusses the Pathogenesis of Lew Body Dementia. The Lewy body dementias (LBDs) are a spectrum of dementing neurodegenerative disorders underpinned by the pathological accumulation of α- synuclein protein in both intraneuronal inclusions, “Lewy bodies, ” and neuronal processes, “Lewy neurites”. The chapter concludes that, as with other forms of cognitive impairment in the aged, the pathophysiology of cognitive impairment in LBD is likely multifactorial. Although it appears that α- synuclein pathology, particularly in the limbic and neocortical regions are linked to cognitive changes, other pathologies such as AD likely also play a role. Emphasizing the complexity, a number of genetic factors have been implicated in the LBDs, some specifically with associations to the synucleinopathies and some with other pathophysiologic processes. This complexity will need to be considered as therapeutic interventions are evaluated for the LBD.


2021 ◽  
Vol 11 (8) ◽  
pp. 965
Author(s):  
Dorit Kliemann ◽  
Ralph Adolphs ◽  
Lynn K. Paul ◽  
J. Michael Tyszka ◽  
Daniel Tranel

Social cognition and emotion are ubiquitous human processes that recruit a reliable set of brain networks in healthy individuals. These brain networks typically comprise midline (e.g., medial prefrontal cortex) as well as lateral regions of the brain including homotopic regions in both hemispheres (e.g., left and right temporo-parietal junction). Yet the necessary roles of these networks, and the broader roles of the left and right cerebral hemispheres in socioemotional functioning, remains debated. Here, we investigated these questions in four rare adults whose right (three cases) or left (one case) cerebral hemisphere had been surgically removed (to a large extent) to treat epilepsy. We studied four closely matched healthy comparison participants, and also compared the patient findings to data from a previously published larger healthy comparison sample (n = 33). Participants completed standardized socioemotional and cognitive assessments to investigate social cognition. Functional magnetic resonance imaging (fMRI) data were obtained during passive viewing of a short, animated movie that distinctively recruits two social brain networks: one engaged when thinking about other agents’ internal mental states (e.g., beliefs, desires, emotions; so-called Theory of Mind or ToM network), and the second engaged when thinking about bodily states (e.g., pain, hunger; so-called PAIN network). Behavioral assessments demonstrated remarkably intact general cognitive functioning in all individuals with hemispherectomy. Social-emotional functioning was somewhat variable in the hemispherectomy participants, but strikingly, none of these individuals had consistently impaired social-emotional processing and none of the assessment scores were consistent with a psychiatric disorder. Using inter-region correlation analyses, we also found surprisingly typical ToM and PAIN networks, as well as typical differentiation of the two networks (in the intact hemisphere of patients with either right or left hemispherectomy), based on idiosyncratic reorganization of cortical activation. The findings argue that compensatory brain networks can process social and emotional information following hemispherectomy across different age levels (from 3 months to 20 years old), and suggest that social brain networks typically distributed across midline and lateral brain regions in this domain can be reorganized, to a substantial degree.


2013 ◽  
Vol 25 (9) ◽  
pp. 1406-1417 ◽  
Author(s):  
Juan Manuel Contreras ◽  
Jessica Schirmer ◽  
Mahzarin R. Banaji ◽  
Jason P. Mitchell

An individual has a mind; a group does not. Yet humans routinely endow groups with mental states irreducible to any of their members (e.g., “scientists hope to understand every aspect of nature”). But are these mental states categorically similar to those we attribute to individuals? In two fMRI experiments, we tested this question against a set of brain regions that are consistently associated with social cognition—medial pFC, anterior temporal lobe, TPJ, and medial parietal cortex. Participants alternately answered questions about the mental states and physical attributes of individual people and groups. Regions previously associated with mentalizing about individuals were also robustly responsive to judgments of groups, suggesting that perceivers deploy the same social-cognitive processes when thinking about the mind of an individual and the “mind” of a group. However, multivariate searchlight analysis revealed that several of these regions showed distinct multivoxel patterns of response to groups and individual people, suggesting that perceivers maintain distinct representations of groups and individuals during mental state inferences. These findings suggest that perceivers mentalize about groups in a manner qualitatively similar to mentalizing about individual people, but that the brain nevertheless maintains important distinctions between the representations of such entities.


2020 ◽  
Vol 21 (21) ◽  
pp. 8043 ◽  
Author(s):  
Pablo Gracia ◽  
José D. Camino ◽  
Laura Volpicelli-Daley ◽  
Nunilo Cremades

α-Synuclein amyloid aggregation is a defining molecular feature of Parkinson’s disease, Lewy body dementia, and multiple system atrophy, but can also be found in other neurodegenerative disorders such as Alzheimer’s disease. The process of α-synuclein aggregation can be initiated through alternative nucleation mechanisms and dominated by different secondary processes giving rise to multiple amyloid polymorphs and intermediate species. Some aggregated species have more inherent abilities to induce cellular stress and toxicity, while others seem to be more potent in propagating neurodegeneration. The preference for particular types of polymorphs depends on the solution conditions and the cellular microenvironment that the protein encounters, which is likely related to the distinct cellular locations of α-synuclein inclusions in different synucleinopathies, and the existence of disease-specific amyloid polymorphs. In this review, we discuss our current understanding on the nature and structure of the various types of α-synuclein aggregated species and their possible roles in pathology. Precisely defining these distinct α-synuclein species will contribute to understanding the molecular origins of these disorders, developing accurate diagnoses, and designing effective therapeutic interventions for these highly debilitating neurodegenerative diseases.


2016 ◽  
Vol 33 (S1) ◽  
pp. S368-S368
Author(s):  
C. Frank

IntroductionTheory of mind (ToM) is the ability to predict behaviors of others in terms of their underlying mental states. It is carried out in order to make sense of and predict behavior. Impairments in ToM have been found in many psychiatric/neurological disorders including schizophrenia and autism spectrum disorders. Previous research has indicated sex difference in ToM development. Previous research has also found some differences in the neural basis of ToM.Objectives/aimsAn objective/aim of the present study was to examine possible sex differences in the neural mechanism associated with ToM development. Another objective was to examine the neural basis of ToM that is shared by both sexes throughout development.MethodsThirty-two adults (16 women) and 24 children (12 girls) were assessed with fMRI while performing a false belief (FB) task.ResultsDuring the ToM relative to non-ToM condition, adults and children of both sexes showed increased activity in the medial prefrontal cortex (mPFC) and the temporo-parietal junction (TPJ). Both boys and girls recruited more brain regions than adults. Moreover, children employed structures involved in the human mirror neuron system (hMNS) more than adults. More specifically, boys recruited the inferior frontal gyrus (IFG) more than men, while girls recruited the precentral gyrus more than women.ConclusionsThese results suggest that boys/men and girls/women employ different brain regions for ToM during development.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2006 ◽  
Vol 361 (1476) ◽  
pp. 2129-2141 ◽  
Author(s):  
David Skuse

The neural basis of social cognition has been the subject of intensive research in both human and non-human primates. Exciting, provocative and yet consistent findings are emerging. A major focus of interest is the role of efferent and afferent connectivity between the amygdala and the neocortical brain regions, now believed to be critical for the processing of social and emotional perceptions. One possible component is a subcortical neural pathway, which permits rapid and preconscious processing of potentially threatening stimuli, and it leads from the retina to the superior colliculus, to the pulvinar nucleus of the thalamus and then to the amygdala. This pathway is activated by direct eye contact, one of many classes of potential threat, and may be particularly responsive to the ‘whites of the eyes’. In humans, autonomic arousal evoked by this stimulus is associated with the activity in specific cortical regions concerned with processing visual information from faces. The integrated functioning of these pathways is modulated by one or more X-linked genes, yet to be identified. The emotional responsiveness of the amygdala, and its associated circuits, to social threat is also influenced by functional polymorphisms in the promoter of the serotonin transporter gene. We still do not have a clear account of how specific allelic variation, in candidate genes, increases susceptibility to developmental disorders, such as autism, or psychiatric conditions, such as anxiety or depressive illness. However, the regulation of emotional responsiveness to social cues lies at the heart of the problem, and recent research indicates that we may be nearing a deeper and more comprehensive understanding.


2020 ◽  
Author(s):  
Miriam E. Weaverdyck ◽  
Mark Allen Thornton ◽  
Diana Tamir

Each individual experiences mental states in their own idiosyncratic way, yet perceivers are able to accurately understand a huge variety of states across unique individuals. How do they accomplish this feat? Do people think about their own anger in the same ways as another person’s? Is reading about someone’s anxiety the same as seeing it? Here, we test the hypothesis that a common conceptual core unites mental state representations across contexts. Across three studies, participants judged the mental states of multiple targets, including a generic other, the self, a socially close other, and a socially distant other. Participants viewed mental state stimuli in multiple modalities, including written scenarios and images. Using representational similarity analysis, we found that brain regions associated with social cognition expressed stable neural representations of mental states across both targets and modalities. This suggests that people use stable models of mental states across different people and contexts.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Giacomo Figà Talamanca

Abstract Joint action among human beings is characterized by using elaborate cognitive feats, such as representing the mental states of others about a certain state of affairs. It is still debated how these capacities evolved in the hominid lineage. I suggest that the consolidation of a shared practice over time can foster the predictability of other’s behavior. This might facilitate the evolutionary passage from inferring what others might know by simply seeing them and what they are viewing towards a mutual awareness of each other’s beliefs. I will examine the case for cooperative hunting in one chimpanzee community and argue that it is evidence that they have the potential to achieve common ground, suggesting that the consolidation of a practice might have supported the evolution of higher social cognition in the hominid lineage.


2021 ◽  
Author(s):  
David J. Brooks

AbstractIn this paper, the structural and functional imaging changes associated with sporadic and genetic Parkinson’s disease and atypical Parkinsonian variants are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed, and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression is debated. Imaging changes associated with nonmotor complications of PD are presented. The similarities and differences in imaging findings in Lewy body dementia, Parkinson’s disease dementia, and Alzheimer’s disease are discussed.


2021 ◽  
Author(s):  
Stephanie N. L. Schmidt ◽  
Joachim Hass ◽  
Peter Kirsch ◽  
Daniela Mier

Sign in / Sign up

Export Citation Format

Share Document