Interaction of the Planets through the Solar Wind

1967 ◽  
Vol 1 (1) ◽  
pp. 5-6 ◽  
Author(s):  
E. G. Bowen

It is usual to describe the motion of the planets around the sun in terms only of the gravitational forces between them. The purpose of this note is to point out that another form of interaction between bodies in the solar system is possible through the medium of the solar wind.

2009 ◽  
Vol 5 (S268) ◽  
pp. 71-79 ◽  
Author(s):  
Johannes Geiss ◽  
George Gloeckler

AbstractFor our understanding of the origin and evolution of baryonic matter in the Universe, the Protosolar Cloud (PSC) is of unique importance in two ways: 1) Up to now, many of the naturally occurring nuclides have only been detected in the solar system. 2) Since the time of solar system formation, the Sun and planets have been virtually isolated from the galactic nuclear evolution, and thus the PSC is a galactic sample with a degree of evolution intermediate between the Big Bang and the present.The abundances of the isotopes of hydrogen and helium in the Protosolar Cloud are primarily derived from composition measurements in the solar wind, the Jovian atmosphere and “planetary noble gases” in meteorites, and also from observations of density profiles inside the Sun. After applying the changes in isotopic and elemental composition resulting from processes in the solar wind, the Sun and Jupiter, PSC abundances of the four lightest stable nuclides are given.


2020 ◽  
Author(s):  
Colin Johnstone

<p>During the Archean eon from 3.8 to 2.5 billion years ago, the Earth's upper atmosphere and interactions with the magnetosphere and the solar wind were likely significantly different to how it is today due to major differences in the chemical composition of the atmosphere and the younger Sun being signifcantly more active. Understanding these factors is important for understanding the evolution of planetary atmospheres within our solar system and beyond. While the higher activity of the Sun would have caused additional heating and expansion of the atmosphere, geochemical measurements show that carbon dioxide was far more abundant during this time and this would have led to significantly thermospheric cooling which would have protected the atmosphere from losses to space. I will present a study of the effects of the carbon dioxide composition and the Sun's activity evolution on the thermosphere and ionosphere of the Archean Earth, studying for the first time the effects of different scenarios for the Sun's activity evolution. I will show the importance of these factors for the exosphere and escape processes of the Earth and terrestrial planets outside our solar system.</p>


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Aline A. Vidotto

AbstractHow has the solar wind evolved to reach what it is today? In this review, I discuss the long-term evolution of the solar wind, including the evolution of observed properties that are intimately linked to the solar wind: rotation, magnetism and activity. Given that we cannot access data from the solar wind 4 billion years ago, this review relies on stellar data, in an effort to better place the Sun and the solar wind in a stellar context. I overview some clever detection methods of winds of solar-like stars, and derive from these an observed evolutionary sequence of solar wind mass-loss rates. I then link these observational properties (including, rotation, magnetism and activity) with stellar wind models. I conclude this review then by discussing implications of the evolution of the solar wind on the evolving Earth and other solar system planets. I argue that studying exoplanetary systems could open up new avenues for progress to be made in our understanding of the evolution of the solar wind.


2017 ◽  
Vol 98 (12) ◽  
pp. 2593-2602 ◽  
Author(s):  
Keith Strong ◽  
Nicholeen Viall ◽  
Joan Schmelz ◽  
Julia Saba

Abstract The Sun exports a continuous outflow of plasma into interplanetary space: the solar wind. The solar wind primarily comprises two components: high- and slow-speed flows. These move with velocities ranging from 200 to 800 km s-1 depending on the source of the particular flow. As well as its speed, the density, temperature, and even the composition of the solar wind change. Adding to its intrinsic variability, there are embedded transients resulting from flares and coronal mass ejections that further complicate its dynamics and space weather impacts. The solar wind interacts differently with each of the solar system objects it encounters based on their magnetic and atmospheric properties. Even more complex processes occur as the solar wind encounters the interstellar medium, at the outer boundaries of the Sun’s domain. The solar wind stretches to beyond 100 au (where 1 au ≡ 149 597 870 700 m) from the Sun, which means that Earth is essentially immersed in the very hot solar atmosphere, and that leads to many space weather impacts on life and society. The specific space weather impacts on Earth will be discussed in detail in the next two papers in this series.


Author(s):  
John F. Caddy

An experimental dowsing of the planetary and lunar bodies of the solar system suggests that all planetary and lunar names evoke some degree of energetic excitation reflecting that of the bodies themselves. The highest values of pranic energy were found for Jupiter and the other large distant planets, and for moons close to their planet which are subject to gravitational forces and show volcanic activity. The Earth, Venus and Mars show similar moderate-high levels of pranic energy, but the low-moderate scores for pranic energy shown by Mercury and the Sun seem to verify that subtle energy production is incompatible with high production or high levels of conventional photonic radiation. A short discussion of the implications of these observations follows.


2020 ◽  
Author(s):  
Johan von Forstner ◽  
Jingnan Guo ◽  
Robert F. Wimmer-Schweingruber ◽  
Mateja Dumbović ◽  
Miho Janvier ◽  
...  

<p>Interplanetary coronal mass ejections (ICMEs), large clouds of plasma and magnetic field regularly expelled from the Sun, are one of the main drivers of space weather effects in the solar system. While the prediction of their arrival time at Earth and other locations in the heliosphere is still a complex task, it is also necessary to further understand the time evolution of their geometric and magnetic structure, which is even more challenging considering the limited number of available observation points.</p><p>Forbush decreases (FDs), short-term drops in the flux of galactic cosmic rays (GCR), can be caused by the shielding from strong and/or turbulent magnetic structures in the solar wind, such as ICMEs and their associated shock/sheath regions. In the past, FD observations have often been used to determine the arrival times of ICMEs at different locations in the solar system, especially where sufficient solar wind plasma and magnetic field measurements are not (or not always) available. One of these locations is Mars, where the Radiation Assessment Detector (RAD) onboard the Mars Science Laboratory (MSL) mission's Curiosity rover has been continuously measuring GCRs and FDs on the surface for more than 7 years.</p><p>In this work, we investigate whether FD data can be used to derive additional information about the ICME properties than just the arrival time by performing a statistical study based on catalogs of FDs observed at Earth or Mars. In particular, we find that the linear correlation between the FD amplitude and the maximum steepness, which was already seen at Earth by previous authors (Belov et al., 2008, Abunin et al., 2012), is likewise present at Mars, but with a different proprtionality factor.</p><p>By consulting physics-based analytical models of FDs, we find that this quantity is not expected to be influenced by the different energy ranges of GCR particles observed by the instruments at Earth and Mars. Instead, we suggest that the difference in FD characteristics at the two planets is caused by the radial enlargement of the ICMEs, and particularly their sheath regions, as they propagate from Earth (1 AU) to Mars (~ 1.5 AU). This broadening factor derived from our analysis extends observations for the evolution closer to the Sun by Janvier et al. (2019, JGR Space Physics) to larger heliocentric distances and is consistent with these results.</p>


2008 ◽  
Vol 4 (S257) ◽  
pp. 17-28 ◽  
Author(s):  
Peter Bochsler

AbstractThe Sun is by far the largest reservoir of matter in the solar system and contains more than 99% of the mass of the solar system. Theories on the formation of the solar system maintain that the gravitational collapse is very efficient and that typically not more than one tenth from the solar nebula is lost during the formation process. Consequently, the Sun can be considered as a representative sample of interstellar matter taken from a well mixed reservoir 4.6 Gy ago, at about 8 kpc from the galactic center. At the same time, the Sun is also a faithful witness of the composition of matter at the beginning of the evolution of the solar system and the formation of planets, asteroids, and comets. Knowledge on the solar composition and a fair account of the related uncertainties is relevant for many fields in astrophysics, planetary sciences, cosmo- and geochemistry. Apart from the basic interest in the chemical evolution of the galaxy and the solar system, compositional studies have also led to many applications in space research, i.e., it has helped to distinguish between different components of diffuse heliospheric matter. The elemental, isotopic, and charge state composition of heliospheric particles (solar wind, interstellar neutrals, pickup ions) has been used for a multitude of applications, such as tracing the source material, constraining parameters for models of the acceleration processes, and of the transport through the interplanetary medium. It is important to realize, that the two mainstream applications, as outlined above – geochemistry and cosmochemistry on one side, and tracing of heliospheric processes on the other side – are not independent of each other. Understanding the physical processes, e.g., of the fractionation of the solar wind, is crucial for the interpretation of compositional data; on the other hand, reliable information on the source composition is the basis for putting constraints on models of the solar wind fractionation.


Eos ◽  
2021 ◽  
Vol 102 ◽  
Author(s):  
Yongliang Zhang ◽  
Larry Paxton

A new set of five books presents the latest science on the Sun and the solar wind, magnetospheres in the solar system, Earth’s ionosphere, Earth’s upper atmosphere, and the effects of space weather.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Kazuo Shiokawa ◽  
Katya Georgieva

AbstractThe Sun is a variable active-dynamo star, emitting radiation in all wavelengths and solar-wind plasma to the interplanetary space. The Earth is immersed in this radiation and solar wind, showing various responses in geospace and atmosphere. This Sun–Earth connection variates in time scales from milli-seconds to millennia and beyond. The solar activity, which has a ~11-year periodicity, is gradually declining in recent three solar cycles, suggesting a possibility of a grand minimum in near future. VarSITI—variability of the Sun and its terrestrial impact—was the 5-year program of the scientific committee on solar-terrestrial physics (SCOSTEP) in 2014–2018, focusing on this variability of the Sun and its consequences on the Earth. This paper reviews some background of SCOSTEP and its past programs, achievements of the 5-year VarSITI program, and remaining outstanding questions after VarSITI.


Science ◽  
2011 ◽  
Vol 332 (6037) ◽  
pp. 1533-1536 ◽  
Author(s):  
B. Marty ◽  
M. Chaussidon ◽  
R. C. Wiens ◽  
A. J. G. Jurewicz ◽  
D. S. Burnett

Sign in / Sign up

Export Citation Format

Share Document