Detecting sexual predators in chats using behavioral features and imbalanced learning

2017 ◽  
Vol 23 (4) ◽  
pp. 589-616 ◽  
Author(s):  
CLAUDIA CARDEI ◽  
TRAIAN REBEDEA

AbstractThis paper presents a system developed for detecting sexual predators in online chat conversations using a two-stage classification and behavioral features. A sexual predator is defined as a person who tries to obtain sexual favors in a predatory manner, usually with underage people. The proposed approach uses several text categorization methods and empirical behavioral features developed especially for the task at hand. After investigating various approaches for solving the sexual predator identification problem, we have found that a two-stage classifier achieves the best results. In the first stage, we employ a Support Vector Machine classifier to distinguish conversations having suspicious content from safe online discussions. This is useful as most chat conversations in real life do not contain a sexual predator, therefore it can be viewed as a filtering phase that enables the actual detection of predators to be done only for suspicious chats that contain a sexual predator with a very high degree. In the second stage, we detect which of the users in a suspicious discussion is an actual predator using a Random Forest classifier. The system was tested on the corpus provided by the PAN 2012 workshop organizers and the results are encouraging because, as far as we know, our solution outperforms all previous approaches developed for solving this task.

Author(s):  
Xinghua Fan

Text categorization (TC) is a task of assigning one or multiple predefined category labels to natural language texts. To deal with this sophisticated task, a variety of statistical classification methods and machine learning techniques have been exploited intensively (Sebastiani, 2002), including the Naïve Bayesian (NB) classifier (Lewis, 1998), the Vector Space Model (VSM)-based classifier (Salton, 1989), the example-based classifier (Mitchell, 1996), and the Support Vector Machine (Yang & Liu, 1999). Text filtering is a basic type of text categorization (two-class TC). There are many real-life applications (Fan, 2004), a typical one of which is the ill information filtering, such as erotic information and garbage information filtering on the web, in e-mails and in short messages of mobile phones. It is obvious that this sort of information should be carefully controlled. On the other hand, the filtering performance using the existing methodologies is still not satisfactory in general. The reason lies in that there exist a number of documents with high degree of ambiguity, from the TC point of view, in a document collection, that is, there is a fuzzy area across the border of two classes (for the sake of expression, we call the class consisting of the ill information- related texts, or, the negative samples, the category of TARGET, and, the class consisting of the ill information-not-related texts, or, the positive samples, the category of Non-TARGET). Some documents in one category may have great similarities with some other documents in the other category, for example, a lot of words concerning love story and sex are likely appear in both negative samples and positive samples if the filtering target is erotic information.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-23
Author(s):  
Bo Liu ◽  
Haowen Zhong ◽  
Yanshan Xiao

Multi-view classification aims at designing a multi-view learning strategy to train a classifier from multi-view data, which are easily collected in practice. Most of the existing works focus on multi-view classification by assuming the multi-view data are collected with precise information. However, we always collect the uncertain multi-view data due to the collection process is corrupted with noise in real-life application. In this case, this article proposes a novel approach, called uncertain multi-view learning with support vector machine (UMV-SVM) to cope with the problem of multi-view learning with uncertain data. The method first enforces the agreement among all the views to seek complementary information of multi-view data and takes the uncertainty of the multi-view data into consideration by modeling reachability area of the noise. Then it proposes an iterative framework to solve the proposed UMV-SVM model such that we can obtain the multi-view classifier for prediction. Extensive experiments on real-life datasets have shown that the proposed UMV-SVM can achieve a better performance for uncertain multi-view classification in comparison to the state-of-the-art multi-view classification methods.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 60
Author(s):  
Md Arifuzzaman ◽  
Muhammad Aniq Gul ◽  
Kaffayatullah Khan ◽  
S. M. Zakir Hossain

There are several environmental factors such as temperature differential, moisture, oxidation, etc. that affect the extended life of the modified asphalt influencing its desired adhesive properties. Knowledge of the properties of asphalt adhesives can help to provide a more resilient and durable asphalt surface. In this study, a hybrid of Bayesian optimization algorithm and support vector regression approach is recommended to predict the adhesion force of asphalt. The effects of three important variables viz., conditions (fresh, wet and aged), binder types (base, 4% SB, 5% SB, 4% SBS and 5% SBS), and Carbon Nano Tube doses (0.5%, 1.0% and 1.5%) on adhesive force are taken into consideration. Real-life experimental data (405 specimens) are considered for model development. Using atomic force microscopy, the adhesive strength of nanoscales of test specimens is determined according to functional groups on the asphalt. It is found that the model predictions overlap with the experimental data with a high R2 of 90.5% and relative deviation are scattered around zero line. Besides, the mean, median and standard deviations of experimental and the predicted values are very close. In addition, the mean absolute Error, root mean square error and fractional bias values were found to be low, indicating the high performance of the developed model.


2013 ◽  
Vol 694-697 ◽  
pp. 1987-1992 ◽  
Author(s):  
Xing Gang Wu ◽  
Cong Guo

Proposed an approach to identify vehicles considering the variation in image size, illumination, and view angles under different cameras using Support Vector Machine with weighted random trees (WRT-SVM). With quantizing the scale-invariant features of image pairs by the weighted random trees, the identification problem is formulated as a same-different classification problem. Results show the efficiency of building the randomized tree due to the weights of the samples and the control of the false-positive rate of the identify system.


Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3586 ◽  
Author(s):  
Sizhou Sun ◽  
Jingqi Fu ◽  
Ang Li

Given the large-scale exploitation and utilization of wind power, the problems caused by the high stochastic and random characteristics of wind speed make researchers develop more reliable and precise wind power forecasting (WPF) models. To obtain better predicting accuracy, this study proposes a novel compound WPF strategy by optimal integration of four base forecasting engines. In the forecasting process, density-based spatial clustering of applications with noise (DBSCAN) is firstly employed to identify meaningful information and discard the abnormal wind power data. To eliminate the adverse influence of the missing data on the forecasting accuracy, Lagrange interpolation method is developed to get the corrected values of the missing points. Then, the two-stage decomposition (TSD) method including ensemble empirical mode decomposition (EEMD) and wavelet transform (WT) is utilized to preprocess the wind power data. In the decomposition process, the empirical wind power data are disassembled into different intrinsic mode functions (IMFs) and one residual (Res) by EEMD, and the highest frequent time series IMF1 is further broken into different components by WT. After determination of the input matrix by a partial autocorrelation function (PACF) and normalization into [0, 1], these decomposed components are used as the input variables of all the base forecasting engines, including least square support vector machine (LSSVM), wavelet neural networks (WNN), extreme learning machine (ELM) and autoregressive integrated moving average (ARIMA), to make the multistep WPF. To avoid local optima and improve the forecasting performance, the parameters in LSSVM, ELM, and WNN are tuned by backtracking search algorithm (BSA). On this basis, BSA algorithm is also employed to optimize the weighted coefficients of the individual forecasting results that produced by the four base forecasting engines to generate an ensemble of the forecasts. In the end, case studies for a certain wind farm in China are carried out to assess the proposed forecasting strategy.


2013 ◽  
Vol 311 ◽  
pp. 158-163 ◽  
Author(s):  
Li Qin Huang ◽  
Li Qun Lin ◽  
Yan Huang Liu

MapReduce framework of cloud computing has an effective way to achieve massive text categorization. In this paper a distributed parallel text training algorithm in cloud computing environment based on multi-class Support Vector Machines(SVM) is designed. In cloud computing environment Map tasks realize distributing various types of samples and Reduce tasks realize the specific SVM training. Experimental results show that the execution time of text training decreases with the number of Reduce tasks increasing. Also a parallel text classifying based on cloud computing is designed and implemented, which classify the unknown type texts. Experimental results show that the speed of text classifying increases with the number of Map tasks increasing.


2011 ◽  
Vol 181-182 ◽  
pp. 830-835
Author(s):  
Min Song Li

Latent Semantic Indexing(LSI) is an effective feature extraction method which can capture the underlying latent semantic structure between words in documents. However, it is probably not the most appropriate for text categorization to use the method to select feature subspace, since the method orders extracted features according to their variance,not the classification power. We proposed a method based on support vector machine to extract features and select a Latent Semantic Indexing that be suited for classification. Experimental results indicate that the method improves classification performance with more compact representation.


Sign in / Sign up

Export Citation Format

Share Document